2,857 research outputs found

    BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Get PDF
    In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell) fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the evolution of multicellularity

    From the Unimate to the Delta Robot: The Early Decades of Industrial Robotics

    Get PDF
    In this paper, the early decades of the history of industrial robots (from the 1950\u2019s to the beginning of the 1990\u2019s, approximately) will be described. The history of industrial robotics can be considered starting with Unimate, the first industrial robot designed and built by Devol and Engelberger. The subsequent evolutions of industrial robotics are described in the manuscript, taking into account both the technical and the economic point of view, until the beginning of the 1990\u2019s, when new kinematic structures (parallel robots) appeared, allowing high-speed operations

    Computer‐Assisted Design and Synthetic Applications of Chiral Enol Borinates: Novel, Highly Enantioselective Aldol Reagents

    Get PDF
    We have recently described the development of a quantitative transition state model for the prediction of stereoselectivity in the boron-mediated aldol reaction. This model provides qualitative insights into the factors contributing to the stereochemical outcome of a variety of reactions of synthetic importance. The force field model was used to assist the design and preparation of new chiral boron ligands derived from menthone. The chiral boron enolates were employed in various stereoselective processes, including the addition to chiral aldehydes and the reagent-controlled total synthesis of (3S,4S)-statine. The chiral enolates derived from alpha-halo and alpha-oxysubstituted thioacetates were added to aldehydes and imines. Addition to imines leads to the enantioselective synthesis of chiral aziridines, a formal total synthesis of (+)-thiamphenicol, and a new highly efficient synthesis of the paclitaxel (taxol®) C-13 side-chain and taxol semisynthesis from baccatin III. The stereochemical outcome of the addition to imines was rationalised with the aid of computational studies. Enantioselective addition reactions of the chiral boron enolate derived from thioacetate have successfully been applied to solid phase bound aldehydes to give aldol products in comparable yields and enantioselectivities to the usual solution conditions. Descrevemos recentemente o desenvolvimento de um modelo quantitativo de estados de transição para a previsão da estereosseletividade em condensações aldólicas mediadas por boro. Este modelo fornece percepções qualitativas sobre os fatores, contribuindo para o resultado estereoquímico de uma variedade de reações de importância sintética. O modelo de campo de força foi utilizado para auxiliar na elaboração e preparação de novos ligantes de boro quirais derivados da mentona. Os enolatos de boro quirais foram empregados em vários processos estereosseletivos, incluindo a adição a aldeídos quirais e a síntese total, controlada pelo reagente, da (3S,4S)-estatina. Os enolatos quirais derivados a partir de tioacetatos alfa-halo e alfa-oxisubstituídos foram adicionados a aldeídos e iminas. A adição de iminas leva à síntese enantiosseletiva de aziridinas quirais, a síntese total formal da (+)-tioamfenicol, a uma nova e altamente eficiente síntese da cadeia lateral em C-13 do paclitaxel (taxol®) e a semi-síntese do taxol a aprtir da bacatina III. O resultado estereoquímico da adição das iminas foi racionalizado com o auxílio de estudos computacionais. Reações de adição enantiosseletiva de enolatos de boro quirais derivados do tioacetato foram empregados com sucesso a aldeídos ligados à fase sólida, fornecendo produtos aldólicos em rendimentose enantiosseletividades comparáveis às condições usuais em solução

    The HIFI spectral survey of AFGL 2591 (CHESS). II. Summary of the survey

    Get PDF
    This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI instrument. The spectral survey covered a frequency range from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). In spite of the fact that lines are mostly quite week, 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope.Comment: Accepted to A&

    TIMASSS : The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey: Tentative Detection of Deuterated Methyl Formate (DCOOCH3)

    Full text link
    High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the deuteration of different molecules helps us to understand their formation. This is especially interesting for complex molecules such as methanol and bigger molecules for which it may allow to differentiate between gas-phase and solid-state formation pathways. Methanol exhibits a high deuterium fractionation in hot corinos. Since CH3OH is thought to be a precursor of methyl formate we expect that deuterated methyl formate is produced in such environments. We have searched for the singly-deuterated isotopologue of methyl formate, DCOOCH3, in IRAS 16293-2422, a hot corino well-known for its high degree of methanol deuteration. We have used the IRAM/JCMT unbiased spectral survey of IRAS 16293-2422 which allows us to search for the DCOOCH3 rotational transitions within the survey spectral range (80-280 GHz, 328-366 GHz). The expected emission of deuterated methyl formate is modelled at LTE and compared with the observations.} We have tentatively detected DCOOCH3 in the protostar IRAS 16293-2422. We assign eight lines detected in the IRAM survey to DCOOCH3. Three of these lines are affected by blending problems and one line is affected by calibration uncertainties, nevertheless the LTE emission model is compatible with the observations. A simple LTE modelling of the two cores in IRAS 16293-2422, based on a previous interferometric study of HCOOCH3, allows us to estimate the amount of DCOOCH3 in IRAS 16293-2422. Adopting an excitation temperature of 100 K and a source size of 2\arcsec and 1\farcs5 for the A and B cores, respectively, we find that N(A,DCOOCH3) = N(B,DCOOCH3) ~ 6.10^14 /cm2. The derived deuterium fractionation is ~ 15%, consistent with values for other deuterated species in this source and much greater than that expected from the deuterium cosmic abundance. DCOOCH3, if its tentative detection is confirmed, should now be considered in theoretical models that study complex molecule formation and their deuteration mechanisms. Experimental work is also needed to investigate the different chemical routes leading to the formation of deuterated methyl formate

    Physical structure and CO abundance of low-mass protostellar envelopes

    Get PDF
    We present 1D radiative transfer modelling of the envelopes of a sample of 18 low-mass protostars and pre-stellar cores with the aim of setting up realistic physical models, for use in a chemical description of the sources. The density and temperature profiles of the envelopes are constrained from their radial profiles obtained from SCUBA maps at 450 and 850 micron and from measurements of the source fluxes ranging from 60 micron to 1.3 mm. The densities of the envelopes within ~10000 AU can be described by single power-laws r^{-p} for the class 0 and I sources with p ranging from 1.3 to 1.9, with typical uncertainties of +/- 0.2. Four sources have flatter profiles, either due to asymmetries or to the presence of an outer constant density region. No significant difference is found between class 0 and I sources. The power-law fits fail for the pre-stellar cores, supporting recent results that such cores do not have a central source of heating. The derived physical models are used as input for Monte Carlo modelling of submillimeter C18O and C17O emission. It is found that class I objects typically show CO abundances close to those found in local molecular clouds, but that class 0 sources and pre-stellar cores show lower abundances by almost an order of magnitude implying that significant depletion occurs for the early phases of star formation. While the 2-1 and 3-2 isotopic lines can be fitted using a constant fractional CO abundance throughout the envelope, the 1-0 lines are significantly underestimated, possibly due to contribution of ambient molecular cloud material to the observed emission. The difference between the class 0 and I objects may be related to the properties of the CO ices.Comment: 21 pages, 12 figures, accepted by A&

    Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422

    Get PDF
    It remains a key challenge to establish the molecular content of different components of low-mass protostars, like their envelopes and disks, and how this depends on the evolutionary stage and/or environment of the young stars. Observations at submillimeter wavelengths provide a direct possibility to study the chemical composition of low-mass protostars through transitions probing temperatures up to a few hundred K in the gas surrounding these sources. This paper presents a large molecular line survey of the deeply embedded protostellar binary IRAS 16293-2422 from the Submillimeter Array (SMA) - including images of individual lines down to approximately 1.5-3" (190-380 AU) resolution. More than 500 individual transitions are identified related to 54 molecular species (including isotopologues) probing temperatures up to about 550 K. Strong chemical differences are found between the two components in the protostellar system with a separation between, in particular, the sulfur- and nitrogen-bearing species and oxygen-bearing complex organics. The action of protostellar outflow on the ambient envelope material is seen in images of CO and SiO and appear to influence a number of other species, including (deuterated) water, HDO. The effects of cold gas-phase chemistry is directly imaged through maps of CO, N2D+ and DCO+, showing enhancements of first DCO+ and subsequently N2D+ in the outer envelope where CO freezes-out on dust grains.Comment: Accepted for publication in A&A, 30 pages, 22 figure

    Organic molecules in the protoplanetary disk of DG Tau revealed by ALMA

    Get PDF
    Planets form in protoplanetary disks and inherit their chemical compositions. It is thus crucial to map the distribution and investigate the formation of simple organics, such as formaldehyde and methanol, in protoplanetary disks. We analyze ALMA observations of the nearby disk-jet system around the T Tauri star DG Tau in the o-H2_2CO 31,221,13_{1,2}-2_{1,1} and CH3_3OH 32,241,43_{-2,2}-4_{-1,4} E, 50,540,45_{0,5}-4_{0,4} A transitions at an unprecedented resolution of 0.15"\sim0.15", i.e., 18\sim18 au at a distance of 121 pc. The H2_2CO emission originates from a rotating ring extending from 40\sim40 au with a peak at 62\sim62 au, i.e., at the edge of the 1.3mm dust continuum. CH3_3OH emission is not detected down to an r.m.s. of 3 mJy/beam in the 0.162 km/s channel. Assuming an ortho-to-para ratio of 1.8-2.8 the ring- and disk-height-averaged H2_2CO column density is 0.34×1014\sim0.3-4\times10^{14} cm2^{-2}, while that of CH3_3OH is <0.040.7×1014<0.04-0.7\times10^{14} cm2^{-2}. In the inner 4040 au no o-H2_2CO emission is detected with an upper limit on its beam-averaged column density of 0.56×1013\sim0.5-6\times10^{13} cm2^{-2}. The H2_2CO ring in the disk of DG Tau is located beyond the CO iceline (RCO30_{\rm CO}\sim30 au). This suggests that the H2_2CO abundance is enhanced in the outer disk due to formation on grain surfaces by the hydrogenation of CO ice. The emission peak at the edge of the mm dust continuum may be due to enhanced desorption of H2_2CO in the gas phase caused by increased UV penetration and/or temperature inversion. The CH3_3OH/H2_2CO abundance ratio is <1<1, in agreement with disk chemistry models. The inner edge of the H2_2CO ring coincides with the radius where the polarization of the dust continuum changes orientation, hinting at a tight link between the H2_2CO chemistry and the dust properties in the outer disk and at the possible presence of substructures in the dust distribution.Comment: 8 pages, 6 figures, accepted for publication on A&A Letter

    Subarcsecond resolution observations of warm water towards three deeply embedded low-mass protostars

    Get PDF
    Water is present during all stages of star formation: as ice in the cold outer parts of protostellar envelopes and dense inner regions of circumstellar disks, and as gas in the envelopes close to the protostars, in the upper layers of circumstellar disks and in regions of powerful outflows and shocks. In this paper we probe the mechanism regulating the warm gas-phase water abundance in the innermost hundred AU of deeply embedded (Class~0) low-mass protostars, and investigate its chemical relationship to other molecular species during these stages. Millimeter wavelength thermal emission from the para-H2-18O 3(1,3)-2(2,0) (Eu=203.7 K) line is imaged at high angular resolution (0.75"; 190 AU) with the IRAM Plateau de Bure Interferometer towards the deeply embedded low-mass protostars NGC 1333-IRAS2A and NGC 1333-IRAS4A. Compact H2-18O emission is detected towards IRAS2A and one of the components in the IRAS4A binary; in addition CH3OCH3, C2H5CN, and SO2 are detected. Extended water emission is seen towards IRAS2A, possibly associated with the outflow. The detections in all systems suggests that the presence of water on <100 AU scales is a common phenomenon in embedded protostars. We present a scenario in which the origin of the emission from warm water is in a flattened disk-like structure dominated by inward motions rather than rotation. The gas-phase water abundance varies between the sources, but is generally much lower than a canonical abundance of 10^-4, suggesting that most water (>96 %) is frozen out on dust grains at these scales. The derived abundances of CH3OCH3 and SO2 relative to H2-18O are comparable for all sources pointing towards similar chemical processes at work. In contrast, the C2H5CN abundance relative to H2-18O is significantly lower in IRAS2A, which could be due to different chemistry in the sources.Comment: 12 pages, 9 figure

    Detection of 6.7 GHz methanol absorption towards hot corinos

    Full text link
    Methanol masers at 6.7 GHz have been found exclusively towards high-mass star forming regions. Recently, some Class 0 protostars have been found to display conditions similar to what are found in hot cores that are associated with massive star formation. These hot corino sources have densities, gas temperatures, and methanol abundances that are adequate for exciting strong 6.7 GHz maser emission. This raises the question of whether 6.7 GHz methanol masers can be found in both hot corinos and massive star forming regions, and if not, whether thermal methanol emission can be detected. We searched for the 6.7 GHz methanol line towards five hot corino sources in the Perseus region using the Arecibo radio telescope. To constrain the excitation conditions of methanol, we observed thermal submillimeter lines of methanol in the NGC1333-IRAS 4 region with the APEX telescope. We did not detect 6.7 GHz emission in any of the sources, but found absorption against the cosmic microwave background in NGC1333-IRAS 4A and NGC1333-IRAS 4B. Using a large velocity gradient analysis, we modeled the excitation of methanol over a wide range of physical parameters, and verify that the 6.7 GHz line is indeed strongly anti-inverted for densities lower than 10^6 cm^-3. We used the submillimeter observations of methanol to verify the predictions of our model for IRAS 4A by comparison with other CH3OH transitions. Our results indicate that the methanol observations from the APEX and Arecibo telescopes are consistent with dense (n ~ 10^6 cm^-3), cold (T ~ 15-30 K) gas. The lack of maser emission in hot corinos and low-mass protostellar objects in general may be due to densities that are much higher than the quenching density in the region where the radiation field is conducive to maser pumping.Comment: Accepted by A&
    corecore