research

Organic molecules in the protoplanetary disk of DG Tau revealed by ALMA

Abstract

Planets form in protoplanetary disks and inherit their chemical compositions. It is thus crucial to map the distribution and investigate the formation of simple organics, such as formaldehyde and methanol, in protoplanetary disks. We analyze ALMA observations of the nearby disk-jet system around the T Tauri star DG Tau in the o-H2_2CO 31,221,13_{1,2}-2_{1,1} and CH3_3OH 32,241,43_{-2,2}-4_{-1,4} E, 50,540,45_{0,5}-4_{0,4} A transitions at an unprecedented resolution of 0.15"\sim0.15", i.e., 18\sim18 au at a distance of 121 pc. The H2_2CO emission originates from a rotating ring extending from 40\sim40 au with a peak at 62\sim62 au, i.e., at the edge of the 1.3mm dust continuum. CH3_3OH emission is not detected down to an r.m.s. of 3 mJy/beam in the 0.162 km/s channel. Assuming an ortho-to-para ratio of 1.8-2.8 the ring- and disk-height-averaged H2_2CO column density is 0.34×1014\sim0.3-4\times10^{14} cm2^{-2}, while that of CH3_3OH is <0.040.7×1014<0.04-0.7\times10^{14} cm2^{-2}. In the inner 4040 au no o-H2_2CO emission is detected with an upper limit on its beam-averaged column density of 0.56×1013\sim0.5-6\times10^{13} cm2^{-2}. The H2_2CO ring in the disk of DG Tau is located beyond the CO iceline (RCO30_{\rm CO}\sim30 au). This suggests that the H2_2CO abundance is enhanced in the outer disk due to formation on grain surfaces by the hydrogenation of CO ice. The emission peak at the edge of the mm dust continuum may be due to enhanced desorption of H2_2CO in the gas phase caused by increased UV penetration and/or temperature inversion. The CH3_3OH/H2_2CO abundance ratio is <1<1, in agreement with disk chemistry models. The inner edge of the H2_2CO ring coincides with the radius where the polarization of the dust continuum changes orientation, hinting at a tight link between the H2_2CO chemistry and the dust properties in the outer disk and at the possible presence of substructures in the dust distribution.Comment: 8 pages, 6 figures, accepted for publication on A&A Letter

    Similar works

    Available Versions