482 research outputs found

    Effects of Copper and/or Cholesterol Overload on Mitochondrial Function in a Rat Model of Incipient Neurodegeneration

    Get PDF
    Copper (Cu) and cholesterol (Cho) are both associated with neurodegenerative illnesses in humans and animals models. We studied the effect in Wistar rats of oral supplementation with trace amounts of Cu (3 ppm) and/or Cho (2%) in drinking water for 2 months. Increased amounts of nonceruloplasmin-bound Cu were observed in plasma and brain hippocampus together with a higher concentration of ceruloplasmin in plasma, cortex, and hippocampus. Cu, Cho, and the combined treatment Cu + Cho were able to induce a higher Cho/phospholipid ratio in mitochondrial membranes with a simultaneous decrease in glutathione content. The concentration of cardiolipin decreased and that of peroxidation products, conjugated dienes and lipoperoxides, increased. Treatments including Cho produced rigidization in both the outer and inner mitochondrial membranes with a simultaneous increase in permeability. No significant increase in Cyt C leakage to the cytosol was observed except in the case of cortex from rats treated with Cu and Cho nor were there any significant changes in caspase-3 activity and the Bax/Bcl2 ratio. However, the Aβ(1–42)/(1–40) ratio was higher in cortex and hippocampus. These findings suggest an incipient neurodegenerative process induced by Cu or Cho that might be potentiated by the association of the two supplements.Fil: Arnal, Nathalie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Castillo, Hector Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Tacconi, Maria Josefa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Marra, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; Argentin

    Role of Copper and Cholesterol association in the neurodegenerative process

    Get PDF
    Age is one of the main factors involved in the development of neurological illnesses, in particular, Alzheimer, and it is widely held that the rapid aging of the world population is accompanied by a rise in the prevalence and incidence of Alzheimer disease. However, evidence from recent decades indicates that Cu and Cho overload are emerging causative factors in neurodegeneration, a hypothesis that has been partially investigated in experimental models. The link between these two variables and the onset of Alzheimer disease has opened up interesting new possibilities requiring more in-depth analysis. The aim of the present study was therefore to investigate the effect of the association of Cu + Cho (CuCho) as a possible synergistic factor in the development of an Alzheimer-like pathology in Wistar rats. We measured total- and nonceruloplasmin-bound Cu and Cho (free and sterified) contents in plasma and brain zones (cortex and hippocampus), markers of oxidative stress damage, inflammation, and programmed cell death (caspase-3 and calpain isoforms). The ratio beta-amyloid (1-42)/(1-40) was determined in plasma and brain as neurodegenerative biomarker. An evaluation of visuospatial memory (Barnes maze test) was also performed. The results demonstrate the establishment of a prooxidative and proinflammatory environment after CuCho treatment, hallmarked by increased TBARS, protein carbonyls, and nitrite plus nitrate levels in plasma and brain zones (cortex and hippocampus) with a consequent increase in the activity of calpains and no significant changes in caspase-3. A simultaneous increase in the plasma A1-42/A1-40 ratio was found. Furthermore, a slight but noticeable change in visuospatial memory was observed in rats treated with CuCho. We conclude that our model could reflect an initial stage of neurodegeneration in which Cu and Cho interact with one another to exacerbate neurological damage.Fil: Arnal, Nathalie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Bioquímicas de la Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Médicas; ArgentinaFil: Morel, Gustavo Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Bioquímicas de la Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Médicas; ArgentinaFil: Tacconi, Maria Josefa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Bioquímicas de la Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Médicas; ArgentinaFil: Castillo, Hector Omar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico La Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Médicas; ArgentinaFil: Marra, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Bioquímicas de la Plata; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Médicas; Argentin

    Campo Experimental Potrok Aike : resultado de 15 años de labor técnica

    Get PDF
    Libro de edición impresa publicado en 2005 y con edición electrónica en el año 2016.Al crearse, en el año 1985, la Estación Experimental Santa Cruz en el marco del convenio entre el INTA y la provincia de Santa Cruz surgió la necesidad de contar con un campo donde se pudieran desarrollar trabajos de investigación en ganadería, fundamentalmente ovina, y en pastizales naturales con el necesario control de diferentes variables productivas y ambientales. El gobierno provincial cedió un predio ubicado al sur de la provincia de Santa Cruz, en una zona representativa de la Estepa magallánica seca, en el extremo austral de la Patagonia. Esta publicación recopiló y organizó los datos e información dispersa resultante de más de 15 años de trabajo, y transformó esa materia prima en información accesible para técnicos y productores. Conformada por el aporte de distintos autores ofrece la información de base para describir el ambiente del Campo Experimental Potrok Aike, más las conclusiones de ensayos y experiencias llevadas a cabo en el lugar, que son perfectamente extrapolables a todo el sur provincial.EEA Santa CruzFil: Alegre, María Beatriz. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Alegre, María Beatriz. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Alegre, María Beatriz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Anglesio, Francisco. Secretaría de Medio Ambiente. Provincia de Santa Cruz. Santa Cruz; Argentina.Fil: Baetti, Carlos. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Baetti, Carlos. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Bahamonde, Héctor Alejandro. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Bahamonde, Héctor Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Barría, Julio. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Battini, Alberto. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Baumann, Osvaldo. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Borrelli, Pablo. Consultor privado. Buenos Aires; Argentina.Fil: Camejo, Ana María. Consultor privado. Trelew; Argentina.Fil: Castillo, Miguel. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Cibils, Andrés. New México State University. Department of Animal and Range Sciences; Estados UnidosFil: Ciurca, Lorena. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Clifton, Guillermo Raimundo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Clifton, Guillermo Raimundo. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Culun, Victor Pascual. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Escalada, Julián. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Ferrante, Daniela. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Gismondi, Daniel. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: González, Liliana. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Grima, Daniel. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Humano, Gervasio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Iacomini, Mónica. Secretaría de la Producción. Provincia de Santa Cruz. Santa Cruz; Argentina.Fil: Iglesias, Roberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina.Fil: Kofalt, Bustamante Rosa. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Kofalt, Bustamante Rosa. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Kofalt, Bustamante Rosa. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Lamoureux, Mabel Noemi. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Lamoureux, Mabel Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Larrosa, José. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Manero, Amanda. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Manero, Amanda. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Marcolín, Arrigo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina.Fil: Mascó, Mercedes. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Mascó, Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Mascó, Mercedes. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Migliora, Horacio. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Milicevic, Francisco. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Montes, Leopoldo. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Patagonia Sur; Argentina.Fil: Oliva, Gabriel Esteban. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Osses, Julio Angel. Consejo Agrario Provincial- Provincia de Santa Cruz; Argentina.Fil: Paredes, Paula. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peinetti, Raúl. Universidad Nacional de La Pampa. Facultad de Agronomía; Argentina.Fil: Rial, Pablo Eduardo. Ministerio de Economía y Obras Públicas. Provincia de Santa Cruz; Argentina.Fil: Rial, Pablo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Romero, Rubén. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Rosales, Valeria. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Salazar, Daniel. LU85 TV Canal 9. Auxiliar en Control de Erosión de Suelos. Provincia de Santa Cruz; Argentina.Fil: Tapia, Hector Horacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina.Fil: Torra, Francisco. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina.Fil: Zerpa, Débora. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill &amp; Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury
    corecore