488 research outputs found

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    A personal leadership statement

    Get PDF
    Statement submitted in fulfillment of the requirements for the degree of English Teaching Program1. Introduction2. Our Assumptions3. Leadership Empowerment and Implications for the Future4. ConclusionArticuloPregradoLicenciado(a) en Lenguas Extranjeras con Énfasis en Inglé

    Prevención y atención, la mejor herramienta contra la violencia intra familiar existente en familias usuarias de los servicios de la comisaría de Familia en Engativá, atendidas durante el período comprendido entre el 2005 y 2006 en coordinación con Consultorio Social de Uniminuto

    Get PDF
    Tesis de la Sede Principal Uniminuto - BogotáIdentificar los factores socio-familiares asociados al fenómeno de Violencia Intra familiar de algunas de las familias del barrio Las Ferias atendidas en la Comisaría de Familia de Engativá, con el fin de aportar elementos que permitan la elaboración de un diagnóstico social de la población y así mismo la cualificación de la intervención realizada en la Comisaría de Familia

    Prevención y atención, la mejor herramienta contra la violencia intra familiar existente en familias usuarias de los servicios de la comisaría de Familia en Engativá, atendidas durante el período comprendido entre el 2005 y 2006 en coordinación con Consultorio Social de Uniminuto

    Get PDF
    Tesis de la Sede Principal Uniminuto - BogotáIdentificar los factores socio-familiares asociados al fenómeno de Violencia Intra familiar de algunas de las familias del barrio Las Ferias atendidas en la Comisaría de Familia de Engativá, con el fin de aportar elementos que permitan la elaboración de un diagnóstico social de la población y así mismo la cualificación de la intervención realizada en la Comisaría de Familia

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    XV International Congress of Control Electronics and Telecommunications: "The role of technology in times of pandemic and post-pandemic: innovation and development for strategic social and productive sectors"

    No full text
    La anterior selección, motivados por la aseveración de Manuel Castells -hace casi 20 años ya- que la innovación y la difusión de la tecnología parecía ser la herramienta apropiada para el desarrollo en la era de la información. Este 2020, sin embargo, ante la situación disruptiva que aquejó y aqueja a la sociedad red como una estructura social emergente de la Era de la Información basada en redes de producción, energizadas por el poder y la experiencia; falló y debe reencontrar su rumbo. Es así que los problemas acuciantes, ahora, fueron: la atención sanitaria y la superación de la epidemia de Sars Cov 2; tomó forma la, hasta entonces, visión irrealista de Castells que … no podemos avanzar con nuestros modelos de desarrollo actual, destruyendo nuestro entorno y excluyendo a la mayor parte de la humanidad de los beneficios de la revolución tecnológica más extraordinaria de la historia, sin sufrir una devastadora reacción por parte de la sociedad y la naturaleza. Fue así que el Cuarto Mundo, específicamente, donde la suficiencia de recurso humano, de capital, trabajo, información y mercado -vinculados todos a través de la tecnología- supuso que atendería eficazmente a través de la población que podía por su capacidad hacer uso racional y profesional del conocimiento, las necesidades de la mayoritaria población vulnerable y vulnerada. Por lo anterior, poner en el centro a las personas, en entornos de tarea y trabajo globales hiperconectados combinando espacios físicos, corrientes de información con canales de conexión expeditos, y formando profesionales del conocimiento que asuman y afronten los retos derivados de la transformación digital de empresas, universidades, y organizaciones, pero en condiciones de equidad y sujetos de prosperidad, será el desafío en los escenarios presentes y futuros inmediatos.The previous selection, motivated by the assertion of Manuel Castells -almost 20 years ago- that innovation and diffusion of technology seemed to be the appropriate tool for development in the information age. This 2020, however, in the face of the disruptive situation that afflicted and continues to afflict the network society as an emerging social structure of the Information Age based on production networks, energized by power and experience; He failed and must find his way again. Thus, the pressing problems now were: health care and overcoming the Sars Cov 2 epidemic; Castells' until then unrealistic vision took shape that... we cannot advance with our current development models, destroying our environment and excluding the majority of humanity from the benefits of the most extraordinary technological revolution in history, without suffering a devastating reaction from society and nature. It was thus that the Fourth World, specifically, where the sufficiency of human resources, capital, work, information and market - all linked through technology - meant that it would serve effectively through the population that could, due to its capacity, make rational use. and knowledge professional, the needs of the majority vulnerable and vulnerable population. Therefore, putting people at the center, in hyperconnected global task and work environments, combining physical spaces, information flows with expedited connection channels, and training knowledge professionals who assume and face the challenges derived from the digital transformation of companies, universities, and organizations, but in conditions of equality and subject to prosperity, will be the challenge in the present and immediate future scenarios.Bogot

    Consistent patterns of common species across tropical tree communities

    No full text
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Consistent patterns of common species across tropical tree communities

    No full text
    International audienceAbstract Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7 , we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Consistent patterns of common species across tropical tree communities

    No full text
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore