31 research outputs found
Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts
BIN1 is not expressed in human brain microglial cells. (A) Immunohistochemical staining of adjacent sections of normal human brain cortex with antibodies against BIN1 or Iba1 reveals that BIN1 immunoreactive cells that are morphologically distinct from microglia. The boxed region is shown at a higher magnification on the right. (B) Single and two-color immunostaining of the human brain using antibodies against BIN1 and CD45 reveals that perivenular CD45-positive cells of the hematopoietic lineage do not express BIN1. (TIFF 4392 kb
Picture this:A review of research relating to narrative processing by moving image versus language
Reading fiction for pleasure is robustly correlated with improved cognitive attainment and other benefits. It is also in decline among young people in developed nations, in part because of competition from moving image fiction. We review existing research on the differences between reading or hearing verbal fiction and watching moving image fiction, as well as looking more broadly at research on image or text interactions and visual versus verbal processing. We conclude that verbal narrative generates more diverse responses than moving image narrative. We note that reading and viewing narrative are different tasks, with different cognitive loads. Viewing moving image narrative mostly involves visual processing with some working memory engagement, whereas reading narrative involves verbal processing, visual imagery, and personal memory (Xu et al., 2005). Attempts to compare the two by creating equivalent stimuli and task demands face a number of challenges. We discuss the difficulties of such comparative approaches. We then investigate the possibility of identifying lower level processing mechanisms that might distinguish cognition of the two media and propose internal scene construction and working memory as foci for future research. Although many of the sources we draw on concentrate on English-speaking participants in European or North American settings, we also cover material relating to speakers of Dutch, German, Hebrew, and Japanese in their respective countries, and studies of a remote Turkish mountain community
EXPRESS: What is the Median Volume of Intracerebral Hemorrhage and is it Changing?
OBJECTIVES: Population-level estimates of the median intracerebral hemorrhage (ICH) volume would allow for the evaluation of clinical trial external validity and determination of temporal trends. We previously reported the median ICH volume in 1988. However, differences in risk factor management, neuroimaging and demographics may have affected ICH volumes. The goal of this study was to determine the median volume of ICH within a population-based cross-sectional study, including whether it has changed over time.
METHODS: The Genetic and Environmental Risk Factors for Hemorrhagic Stroke study was a population-based study of ICH among residents of the Greater Cincinnati/Northern Kentucky region from 2008 through 2012. The current study utilizes those data and compares with ICH cases from the same region in 1988. Initial CT images of the head were reviewed, and ICH volumes were calculated using consistent methodology.
RESULTS: From 2008 through 2012, we identified 1117 cases of ICH. The median volume of ICH was 14.0 mL and was lower in black (11.6) than in white (15.5) patients. Median volumes of lobar and deep ICH were 28·8 mL and 9.8 mL, respectively. Median ICH volume changed significantly from 1988 to 2008-2012, with age-and-race adjusted volume decreasing from 18.3 mL to 13.76 mL (p=0.025).
CONCLUSIONS: Median volume of ICH was 13.76 mL, and this should be considered in clinical trial design. Median ICH volume has apparently decreased from 1988 to 2008-2012
Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests
The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. <em>In situ</em> measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the <em>R<sup>2</sup></em> to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests
Estradiol modulates neural response to conspecific and heterospecific song in female house sparrows: An in vivo positron emission tomography study
Although there is growing evidence that estradiol modulates female perception of male sexual signals, relatively little research has focused on female auditory processing. We used in vivo 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging to examine the neuronal effects of estradiol and conspecific song in female house sparrows (Passer domesticus). We assessed brain glucose metabolism, a measure of neuronal activity, in females with empty implants, estradiol implants, and empty implants ~1 month after estradiol implant removal. Females were exposed to conspecific or heterospecific songs immediately prior to imaging. The activity of brain regions involved in auditory perception did not differ between females with empty implants exposed to conspecific vs. heterospecific song, but neuronal activity was significantly reduced in females with estradiol implants exposed to heterospecific song. Furthermore, our within-individual design revealed that changes in brain activity due to high estradiol were actually greater several weeks after peak hormone exposure. Overall, this study demonstrates that PET imaging is a powerful tool for assessing large-scale changes in brain activity in living songbirds, and suggests that after breeding is done, specific environmental and physiological cues are necessary for estradiol-stimulated females to lose the selectivity they display in neural response to conspecific song