941 research outputs found
HD 179949b - a close orbiting extrasolar giant planet with a stratosphere?
The original article can be found at: http://www3.interscience.wiley.com Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2966.2008.13831.xWe have carried out a search for the 2.14-μm spectroscopic signature of the close orbiting extrasolar giant planet, HD179949b. High-cadence time-series spectra were obtained with the Cryogenic high-resolution InfraRed ´ Echelle Spectrograph at Very Large Telescope, Unit 1 on two closely separated nights. Deconvolution yielded spectroscopic profiles with mean signal-to-noise ratios of several thousand, enabling the near-infrared contrast ratios predicted for the HD179949 system to be achieved. Recent models have predicted that the hottest planets may exhibit spectral signatures in emission due to the presence of TiO and VO which may be responsible for a temperature inversion high in the atmosphere.We have used our phase-dependent orbital model and tomographic techniques to search for the planetary signature under the assumption of an absorption line dominated atmospheric spectrum, where T and V are depleted from the atmospheric model, and an emission line dominated spectrum, where TiO and VO are present. We do not detect a planet in either case, but the 2.120–2.174-μm wavelength region covered by our observations enables the deepest near-infrared limits yet to be placed on the planet/star contrast ratio of any close orbiting extrasolar giant planet system. We are able to rule out the presence of an atmosphere dominated by absorption opacities in the case of HD179949b at a contrast ratio of Fp/F∗ ∼ 1/3350, with 99 per cent confidence.Peer reviewe
Constructing and Characterising Solar Structure Models for Computational Helioseismology
In this paper, we construct background solar models that are stable against
convection, by modifying the vertical pressure gradient of Model S
(Christensen-Dalsgaard et al., 1996, Science, 272, 1286) relinquishing
hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that
we wish to remain as close to Model S as possible. In a bid to recover the
Model S eigenmodes, we choose to make additional corrections to the sound speed
of Model S before stabilisation. No stabilised model can be perfectly
solar-like, so we present three stabilised models with slightly different
eigenmodes. The models are appropriate to study the f and p1 to p4 modes with
spherical harmonic degrees in the range from 400 to 900. Background model CSM
has a modified pressure gradient for stabilisation and has eigenfrequencies
within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed
in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and
eigenfunctions that are, in comparison with CSM, closest to those of Model S.
Model CSM_B has a 3% decrease in sound speed in the top 5 Mm resulting in
eigenfrequencies within 1% of Model S and eigenfunctions that are only
marginally adversely affected. These models are useful to study the interaction
of solar waves with embedded three-dimensional heterogeneities, such as
convective flows and model sunspots. We have also calculated the response of
the stabilised models to excitation by random near-surface sources, using
simulations of the propagation of linear waves. We find that the simulated
power spectra of wave motion are in good agreement with an observed SOHO/MDI
power spectrum. Overall, our convectively stabilised background models provide
a good basis for quantitative numerical local helioseismology. The models are
available for download from http://www.mps.mpg.de/projects/seismo/NA4/.Comment: 35 pages, 23 figures Changed title Updated Figure 1
Helioseismic Holography of an Artificial Submerged Sound Speed Perturbation and Implications for the Detection of Pre-Emergence Signatures of Active Regions
We use a publicly available numerical wave-propagation simulation of Hartlep
et al. 2011 to test the ability of helioseismic holography to detect signatures
of a compact, fully submerged, 5% sound-speed perturbation placed at a depth of
50 Mm within a solar model. We find that helioseismic holography as employed in
a nominal "lateral-vantage" or "deep-focus" geometry employing quadrants of an
annular pupil is capable of detecting and characterizing the perturbation. A
number of tests of the methodology, including the use of a plane-parallel
approximation, the definition of travel-time shifts, the use of different
phase-speed filters, and changes to the pupils, are also performed. It is found
that travel-time shifts made using Gabor-wavelet fitting are essentially
identical to those derived from the phase of the Fourier transform of the
cross-covariance functions. The errors in travel-time shifts caused by the
plane-parallel approximation can be minimized to less than a second for the
depths and fields of view considered here. Based on the measured strength of
the mean travel-time signal of the perturbation, no substantial improvement in
sensitivity is produced by varying the analysis procedure from the nominal
methodology in conformance with expectations. The measured travel-time shifts
are essentially unchanged by varying the profile of the phase-speed filter or
omitting the filter entirely. The method remains maximally sensitive when
applied with pupils that are wide quadrants, as opposed to narrower quadrants
or with pupils composed of smaller arcs. We discuss the significance of these
results for the recent controversy regarding suspected pre-emergence signatures
of active regions
Helioseismology of Sunspots: A Case Study of NOAA Region 9787
Various methods of helioseismology are used to study the subsurface
properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen
because it is axisymmetric, shows little evolution during 20-28 January 2002,
and was observed continuously by the MDI/SOHO instrument. (...) Wave travel
times and mode frequencies are affected by the sunspot. In most cases, wave
packets that propagate through the sunspot have reduced travel times. At short
travel distances, however, the sign of the travel-time shifts appears to depend
sensitively on how the data are processed and, in particular, on filtering in
frequency-wavenumber space. We carry out two linear inversions for wave speed:
one using travel-times and phase-speed filters and the other one using mode
frequencies from ring analysis. These two inversions give subsurface wave-speed
profiles with opposite signs and different amplitudes. (...) From this study of
AR9787, we conclude that we are currently unable to provide a unified
description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure
The Physics of turbulent and dynamically unstable Herbig-Haro jets
The overall properties of the Herbig-Haro objects such as centerline
velocity, transversal profile of velocity, flow of mass and energy are
explained adopting two models for the turbulent jet. The complex shapes of the
Herbig-Haro objects, such as the arc in HH34 can be explained introducing the
combination of different kinematic effects such as velocity behavior along the
main direction of the jet and the velocity of the star in the interstellar
medium. The behavior of the intensity or brightness of the line of emission is
explored in three different cases : transversal 1D cut, longitudinal 1D cut and
2D map. An analytical explanation for the enhancement in intensity or
brightness such as usually modeled by the bow shock is given by a careful
analysis of the geometrical properties of the torus.Comment: 17 pages, 10 figures. Accepted for publication in Astrophysics &
Spac
Newly identified properties of surface acoustic power
The cause of enhanced acoustic power surrounding active regions, the acoustic
halo, is not as yet understood. We explore the properties of the enhanced
acoustic power observed near disk center from 21 to 27 January 2002, including
AR 9787. We find that (i) there exists a strong correlation of the enhanced
high frequency power with magnetic-field inclination, with greater power in
more horizontal fields, (ii) the frequency of the maximum enhancement increases
along with magnetic field strength, and (iii) the oscillations contributing to
the halos show modal ridges which are shifted to higher wavenumber at constant
frequency in comparison to the ridges of modes in the quiet-Sun.Comment: 16 pages, 10 figures, submitted to solar physic
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
Convergence studies of mass transport in disks with gravitational instabilities. I. the constant cooling time case
We conduct a convergence study of a protostellar disk, subject to a constant global cooling time and susceptible to gravitational instabilities (GIs), at a time when heating and cooling are roughly balanced. Our goal is to determine the gravitational torques produced by GIs, the level to which transport can be represented by a simple α-disk formulation, and to examine fragmentation criteria. Four simulations are conducted, identical except for the number of azimuthal computational grid points used. A Fourier decomposition of non-axisymmetric density structures in cos (), sin () is performed to evaluate the amplitudes of these structures. The , gravitational torques, and the effective Shakura & Sunyaev α arising from gravitational stresses are determined for each resolution. We find nonzero for all -values and that summed over all is essentially independent of resolution. Because the number of measurable -values is limited to half the number of azimuthal grid points, higher-resolution simulations have a larger fraction of their total amplitude in higher-order structures. These structures act more locally than lower-order structures. Therefore, as the resolution increases the total gravitational stress decreases as well, leading higher-resolution simulations to experience weaker average gravitational torques than lower-resolution simulations. The effective also depends upon the magnitude of the stresses, thus also decreases with increasing resolution. Our converged is consistent with predictions from an analytic local theory for thin disks by Gammie, but only over many dynamic times when averaged over a substantial volume of the disk
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
