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Abstract In local helioseismology, numerical simulations of wave propagation are useful to
model the interaction of solar waves with perturbations to a background solar model. How-
ever, the solution to the linearised equations of motion include convective modes that can
swamp the helioseismic waves that we are interested in. In this article, we construct back-
ground solar models that are stable against convection, by modifying the vertical pressure
gradient of Model S (Christensen-Dalsgaard et al., 1996, Science 272, 1286) relinquishing
hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to
remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we
choose to make additional corrections to the sound speed of Model S before stabilisation.
No stabilised model can be perfectly solar-like, so we present three stabilised models with
slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes
with spherical harmonic degrees in the range from 400 to 900. Background model CSM
has a modified pressure gradient for stabilisation and has eigenfrequencies within 2% of
Model S. Model CSM_A has an additional 10% increase in sound speed in the top 1 Mm re-
sulting in eigenfrequencies within 2% of Model S and eigenfunctions that are, in comparison
with CSM, closest to those of Model S. Model CSM_B has a 3% decrease in sound speed
in the top 5 Mm resulting in eigenfrequencies within 1% of Model S and eigenfunctions
that are only marginally adversely affected. These models are useful to study the interac-
tion of solar waves with embedded three-dimensional heterogeneities, such as convective
flows and model sunspots. We have also calculated the response of the stabilised models to
excitation by random near-surface sources, using simulations of the propagation of linear
waves. We find that the simulated power spectra of wave motion are in good agreement with
an observed SOHO/MDI power spectrum. Overall, our convectively stabilised background
models provide a good basis for quantitative numerical local helioseismology. The models
are available for download from http://www.mps.mpg.de/projects/seismo/NA4/.
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1. Introduction

Numerical simulations are an important tool to study the effects of surface and subsurface
solar structures (sunspots, flows, etc.) on solar oscillations. Since the wave amplitudes are
small compared to the unperturbed background, the equations of motion can be linearised
about a background solar model containing the solar structure being studied. One require-
ment of linear simulations is that the medium through which the waves propagate must be
stable against convection to prevent unstable modes, which grow exponentially and quickly
dominate the solution. A commonly used approach is to consider polytropic background
models that are convectively stable by construction (e.g., Cally and Bogdan, 1993). How-
ever, the Sun is not a polytrope.

This work is motivated to satisfy the need to have convectively stable background models
with eigenmodes similar to those of Model S (Christensen-Dalsgaard et al., 1996). We note
that Model S is not a perfect model of the Sun, however it has the advantage that it has been
extensively tested and used in helioseismology.

This article is divided into the following sections: Section 2 specifies the problem: the
geometry, the equations of motion, the wave attenuation model, boundary conditions, and
the condition for stability. Section 3 outlines the strategy for constructing the models and
measuring the eigenfrequencies and eigenfunctions. Sections 4 through 7 give a detailed
description and characterisation of the eigenmodes of each of the background models that
we obtain. In Section 8 we implement a model of random wave excitation in the Semi-
spectral Linear MHD (SLiM) code (Cameron, Gizon, and Daiffallah, 2007) and compute
the azimuthally averaged power spectra for CSM_A and CSM_B. The power spectra are
compared to an observed power spectrum from the Michelson Doppler Imager onboard the
Solar and Heliospheric Observatory (SOHO/MDI: Scherrer et al., 1995). We conclude with
a short discussion of the models and their foreseen uses.

2. Specifications of the Problem

2.1. Geometry

In this work we are interested in modelling a relatively small portion of the Sun near the solar
surface which extends from 25 Mm below the surface to 2.5 Mm above and 145.77 Mm in
each of the horizontal directions. We define the height [z] to be negative below the surface
and positive above, with z = 0 given by Model S (Christensen-Dalsgaard et al., 1996). The
region is large enough that we can study high-degree low-order (n ≤ 4) modes. Relative to
the entire spherical Sun, however, the size of the region is small. Therefore, in the horizontal
direction we can use Cartesian geometry, rather than spherical, so that the problem may
be solved more efficiently in (horizontal) spectral space. We retain the spherical treatment
in the radial direction. In this approximation, the operators of the problem, where a is any
scalar field and A is any vector field, defined in Section 2.2 are given explicitly by

∇a ≡ ∂zaẑ + ikx x̂ + iky ŷ, (1)

∇ · A ≡ 1

(z + R�)2
∂z

[
(z + R�)2Az

]
ẑ + ikxAx x̂ + ikyAy ŷ, (2)
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where the horizontal wave vector is given by k = kx x̂ + ky ŷ . We note here that z + R� is
equal to the radial distance from the centre of the Sun.

2.2. Linearised Wave Equation

We want to solve for waves propagating through a solar background model in the absence
of a flow or magnetic field. For adiabatic oscillations, the ideal hydrodynamic equations
linearised about an arbitrary, inhomogeneous, background, can be written as (e.g., Lynden-
Bell and Ostriker, 1967):

ρ∂2
t ξ = ∇(

c2ρ∇ · ξ + ξ · ∇p
) − ∇ · (ρξ )gẑ, (3)

where ξ (k, z, t) is the displacement vector, and c, p, ρ, and g < 0 are the background
sound speed, pressure, density, and gravitational acceleration, respectively. The operators are
specified by Equations (1) and (2). Waves in the Sun are attenuated by turbulent convection.
We model this by implementing an attenuation parameter, as described in Section 2.3, into
Equation (3) in the following way:

ρ(∂t + γ )2ξ = ∇(
c2ρ∇ · ξ + ξ · ∇p

) − ∇ · (ρξ )gẑ. (4)

We have modelled the attenuation so that it operates both on the displacement and ve-
locity. This assumes that turbulence in the Sun redistributes the displacement perturbations
throughout the atmosphere without necessarily involving the macroscopic (observable) ve-
locity. This leads us to use v = (∂t + γ )ξ as the observable velocity as in Cameron, Gizon,
and Duvall (2008).

In this article the SLiM code is used to solve Equation (4) (Cameron, Gizon, and Daif-
fallah, 2007) for two types of simulations: to propagate wave-packets and to simulate the
stochastically excited wave field of the Sun. The simulations use 1098 uniformly spaced
(0.025 Mm) grid points in the vertical direction and 100 modes in each of the horizontal
directions.

2.3. Damping Layers and Wave Attenuation

We retain the boundary conditions of Cameron, Gizon, and Daiffallah (2007) where the
box is periodic in the horizontal direction and the top boundary condition is a free surface
(the Lagrangian pressure perturbation is zero). In addition, at the top and bottom boundaries,
“sponge” layers are implemented that artificially reduce the energy of the waves to minimise
reflection.

Waves in the Sun are attenuated by granulation and have a finite lifetime. We model
the power spectral density of the f mode using a Lorentzian with full width at half maxi-
mum (FWHM) �(k) = �∗(k/k∗)2.2, where �∗/2π = 100 µHz and k∗ = 902/R� (Gizon and
Birch, 2002). The LHS of Equation (4) uses (∂t + γ )2ξ ≈ (∂2

t + 2γ ∂t )ξ , whereas Gizon and
Birch (2002) use (∂t + �)∂tξ = (∂2

t + �∂t )ξ . Therefore, the attenuation coefficient used in
our equation of motion is half of that used in Gizon and Birch (2002). The full form of the
damping [γ (k, z)], shown in Figure 1, is given by

γ (k, z)

2π
= �(k)

4π
+

{
e(z+0.85 Mm)/[0.25 Mm] µHz for 0.525 < z < 2.5 Mm,

e−(z+18.54 Mm)/[0.625 Mm] µHz for − 25 < z < −20 Mm.
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Figure 1 The top panel shows the damping γ /2π (with �(k) = 0) as a function of z. The top damping
layer is much stronger than the bottom. From left to right, the dotted line is the top of Model S (zt), the
short-dashed line is the surface, the asterisks are the height at which the random sources [z∗] are implemented,
and the long-dashed line is the effective bottom of the box [zb]. The bottom panel is a plot of the attenuation
[�(k)/2π ] as a function of kR� .

The top damping layer introduces a frequency dependence to the eigenmode solutions.
High-frequency waves have significant energy in the vicinity of the top damping layer and
are affected more than the low frequency waves that have less energy at these heights. Any
damping layers will affect the eigenfrequencies and lifetimes of the mode, but in this case
the lifetimes are predominantly dictated by �(k). The parameters for the damping layers
were guesses, which were shown empirically to damp the reflected waves sufficiently and
not noticeably affect the eigenfrequencies or lifetimes of the modes. The damping layer pa-
rameters are not optimised and other forms have also been found to work (e.g., Hanasoge,
Duvall, and Couvidat, 2007). By using the boundary-value problem (BVP) solver in Ap-
pendix B we find that the difference in the eigenfrequencies between having and not having
the sponge layers is less than 0.5% for the f, p1, and p2 modes and a little higher for the p3

and p4 modes (see Appendix C, Figure 23d). If we adjust the range of the top damping layer
to 0.125 Mm < z < 2.5 Mm we see a maximum 0.5% reduction but only for the p4 modes
at high frequencies (see Appendix C, Figure 23f).

2.4. Initial Background Model

We begin with Model S as our background model (starting from any other standard solar
model would also be possible). Model S extends to 0.5 Mm above the surface, however our
computational domain extends up to 2.5 Mm so that the boundary conditions are sufficiently
far from the surface. We extend Model S above zt = 0.5 Mm in the following way:

c0(z) = cS(zt) for z > zt, (5)

ρ0(z) = ρS(zt)e
−(z−zt)/[0.125 Mm] for z > zt, (6)

p0(z) = pS(zt)e
−(z−zt)/[0.15 Mm] for z > zt, (7)
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where the subscript “S” refers to Model S, the subscript “0” is the extended model. The
denominators in the exponents are the scale heights of the density and pressure, respec-
tively, at zt. The only requirement for the extension of the background was that it should
not increase the wavespeed since we aim to damp the waves at these heights to minimise
reflection. Thus, the sound speed was held constant, and the pressure and density smoothly
extended. The extension is not meant to represent a realistic solar chromosphere, and at this
height the waves will be artificially damped to prevent reflection.

2.5. Conditions for Convective Stability

We want to simulate these propagation of linear waves in a background solar model. Part
of Model S, and therefore the extended Model S described above, is super-adiabatically
stratified and convectively unstable. This instability is a real property of the Sun resulting in
modes that, in a linear calculation, grow exponentially in time and will eventually dominate
the solution. Therefore, we stabilise the background model against convection to satisfy
the condition dzp > c2 dzρ. We do this by altering the pressure gradient. The reason for
choosing to modify the pressure gradient is that it affects the eigenmodes of the model less
than changes to the sound speed and/or density (Cameron, Gizon, and Duvall, 2008). We set
the pressure gradient in the stabilised model as

dzp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(c2
0 dzρ0,dzp0) for z ≤ −0.15 Mm,

max(c2
0 dzρ0 − ε1,dzp0) for − 0.15 Mm < z < 0.1 Mm,

max(c2
0 dzρ0,dzp0) for 0.1 ≤ z < 0.325 Mm,

max(0.99c2
0 dzρ0,dzp0) for z > 0.325 Mm,

where ε1 = 10−5 cgs (at the surface this is ≈0.002 c2
0 dz ρ0). This formulation was arrived

at by empirically testing the stability of the simulation with small values of ε1. An addi-
tional constraint was that it should also remain stable with an embedded perturbation (e.g.
a sunspot as in Cameron, Gizon, and Duvall, 2008). This was the smallest value that was
found to satisfy these conditions. The derivatives, here, are evaluated numerically as

dzp0(zi) ≡ p0(zi) ln
[
p0(zi+1)/p0(zi−1)

]
/(zi+1 − zi−1)

and

dzρ0(zi) ≡ ρ0(zi) ln
[
ρ0(zi+1)/ρ0(zi−1)

]
/(zi+1 − zi−1)

to achieve a greater numerical accuracy. We have tested that this criterion is effective in
maintaining stability for simulations for up to ten solar days.

The stabilisation forfeits hydrostatic equilibrium and introduces gravity modes into the
solution. The gravity modes all have low frequencies and can easily be excluded from any
subsequent analyses. The lack of hydrostatic equilibrium is likely to be more consequen-
tial. There are different formulations of the oscillation equations: those that incorporate the
assumption of hydrostatic equilibrium and those that do not. We stress that everything pre-
sented in this article applies to the formulation presented in Equation (4), which was derived
from the equations of continuity, energy and motion, respectively:

∂tρ
′ = −∇ · (ρ∂tξ),

∂tp
′ = c2

(
∂tρ

′ + ∂t (ξ · ∇ρ)
) − ∂t (ξ · ∇p) and

ρ(∂t + γ )2ξ = −∇p′ + ρ ′gẑ
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(where the primed quantities are the perturbations), without assuming hydrostatic equilib-
rium. Also, the implications for seismic reciprocity (Dahlen and Tromp, 1998) have not been
explored and may be important.

3. Strategy Outline

Now that we have set out the problem, we outline the strategy involved in developing the
convectively stable background models presented in this article. It is described as follows:

• Begin with Extended Solar Model S.
• Convectively stabilise it by changing dzp as described in Section 2.5. This results in CSM.
• Compare the eigenfrequencies and eigenfunctions to those of Model S.
• We find that the eigenfunctions near the surface, where we are most interested in mod-

elling, are not well matched and the eigenfrequencies have increased.

We are left with the choice to modify the sound speed and/or the density to try to correct the
eigenmodes. Since modifying the density has a large effect on the f -mode energy density,
we choose to change the sound speed only. Empirically, we found that increasing the sound
speed near the surface improves the eigenfunctions:

• Begin with Extended Solar Model S.
• Increase the sound speed in the top 1 Mm by 10% (Equation (8)).
• Convectively stabilise the model. This results in CSM_A.
• Compare the eigenfrequencies and eigenfunctions to those of Model S.
• We find that the eigenfunctions are a better match with Model S than CSM, and the

eigenfrequencies are only slightly over-estimated.

We attempt to correct the eigenfrequencies by introducing a small decrease in sound speed
in the top ≈5 Mm, which will reduce the overall speed of the waves and thus reduce the
eigenfrequencies:

• Begin with Extended Solar Model S.
• Take the sound speed profile of CSM_A and introduce an additional decrease in the sound

speed of 3% in the top ≈5 Mm (Equation (9)).
• Convectively stabilise the model.
• Compare the eigenfrequencies and eigenfunctions to those of Model S.
• We find the eigenfrequencies are closer to Model S and the eigenfunctions are only mod-

erately further from Model S than CSM_ A. This results in CSM_B.

For a smooth transition, a Gaussian function was selected for the sound-speed changes. The
particular parameters were determined by trial-and-error of a few guesses to empirically
evaluate how they further affected the eigenmodes. The comparisons to the eigenmodes of
Model S were judged by eye. We calculated the eigenmodes of the models in two ways.
The first used the SLiM numerical simulations (see Appendix A) and the second used a BVP
solver (see Appendix B).

As a quantitative measure of the difference between eigenfrequencies of Model S and the
featured models, we compute the relative difference of the real part of the eigenfrequencies
(determined from both SLiM and the BVP) to the real part of the Model S eigenfrequencies:
ω/ωS − 1. These particular Model S eigenfrequencies were calculated as in Birch, Koso-
vichev, and Duvall (2004) using a Cartesian geometry and constant gravity. For the modes
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Figure 2 The relative difference
of the pressure gradient between
CSM and Model S as a function
of height, z.

that we are interested in, the geometry and radially dependent gravity affect the eigenfre-
quencies by no more than 0.5% (see Appendix C). We measure the difference between the
eigenfunctions of Model S and the stabilised model in two ways. The first, by calculating
the relative difference in area under Re[vz

√
ρ] near the surface between Model S and the

respective stabilised model. The second, by calculating the difference of the height [zp] of
the uppermost peak of Re[vz

√
ρ] between Model S and the respective stabilised model for

each eigenmode (Section 7).

4. Convectively Stable Model (CSM)

Figure 2 shows the relative difference between the stabilised pressure gradient of CSM and
the pressure gradient of Model S [dzp/dzpS − 1], which is as large as 35% near the surface.
We now discuss the effect this change in the pressure gradient has on the eigenmodes.

Figure 3 shows Re[vz

√
ρ], normalised so that

∫ 0.5 Mm
−25 Mm

√
(|vz|2 + |vx |2)ρ dz = 1, as a

function of z for f and p1 to p4 eigenmodes from Model S and CSM (derived using both
SLiM and the BVP). Recall that the depth of our domain allows us to study only up to the p4

mode. The horizontal velocity component of the eigenfunctions [vx

√
ρ] was found to have

a similar agreement to Model S.
We observe that the main effect of the stabilisation on the eigenfunctions is to decrease

the amplitude of Re[vz

√
ρ] near the surface. Since this is where the stabilisation has the

greatest effect on the pressure gradient, changes to the eigenfunctions in this region are not
unexpected.

Figure 4 shows the relative difference of the real part of the eigenfrequencies [ω/ωS − 1]
for each radial order as a function of wavenumber. The quantitative average over 400 <

kR� < 900 shows that the increase in the eigenfrequencies is less than 2%. The increase in
f -mode eigenfrequencies compared to Model S can be attributed to the treatment of gravity
and geometry of the operators (see Appendix C). The agreement between Model S and each
of the convectively stable models will be quantified in Section 7.

Since it is a necessity to modify Model S, and therefore no subsequent model will have
exactly the same eigenmodes, we attempt to correct the eigenmodes by modifying the sound
speed. We found a trade-off between having eigenfunctions or eigenfrequencies closer to
those of Model S. In model CSM_A (Section 5) we attempt to improve the eigenfunctions
and in CSM_B we try to improve the eigenfrequencies without affecting the eigenfunctions
too much (Section 6).
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Figure 3 The z-dependence of the real component of vz
√

ρ for a number of eigenmodes of CSM. The
eigenfrequencies for the wavenumbers kR� = 270, 500, and 750 are specified by colour. The modes have
been normalised so that vz is real at 0.2 Mm and have equal integrals. The dashed curve shows the eigenmodes
from the BVP solution, the dotted curve shows the eigenmodes from the SLiM simulations, and the solid curve
shows the Model S eigenmodes. Each panel corresponds to a different radial order [f , p1 to p4].

5. Convectively Stable Model A (CSM_A)

We follow the procedure set out in Section 3. We found that an increase in sound speed
improved the match between the eigenfunctions of CSM and Model S near the surface. We
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Figure 4 The relative difference
between the real part of the CSM
eigenfrequencies [ω] and the
Model S eigenfrequencies [ωS]
as a function of kR� . The solid
curves are for the simulated SLiM
eigenfrequencies and the dashed
curves are for the BVP solutions.
The average relative difference of
each radial order in this range is
within 2%, with at most 0.5%
due to the different treatment of
gravity and geometry (see
Appendix C).

Figure 5 The relative difference between CSM_A and Model S of (a) the sound speed squared and (b) the
pressure gradient, as a function of z.

chose

cA(z) = c0(z)

[
1 + 0.1 exp

(
−

(
z

1.0 Mm

)2)]
, (8)

where the subscript “A” indicates CSM_A. Starting from Model S with cA specifying the
sound speed, we then rederived the pressure gradient required for stability as set out in Sec-
tion 2.5. Figure 5 shows the relative difference between CSM_A and Model S of the sound
speed squared and the pressure gradient as a function of height. This change in sound speed
was found to raise the height of the uppermost peak of Re[vz

√
ρ]. Figure 6 shows Re[vz

√
ρ]

for various eigenmodes from CSM_A for each radial order, f and p1 to p4. Particularly, the
f -mode eigenfunctions are close to Model S. The p1 and p2 modes are also a better match,
especially near the surface.

The real parts of the eigenfrequencies, shown in Figure 7, are not significantly affected:
the average (over 400 < kR� < 900) relative difference for each radial order is still less
than 2% of Model S values. We have constructed a convectively stable model, CSM_A,
with eigenfunctions closer to Model S than CSM and reasonably similar eigenfrequencies.
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Figure 6 The z-dependence of the real component of vz
√

ρ for a number of eigenmodes of CSM_A. The
eigenfrequencies for the wavenumbers kR� = 270, 500, and 750 are specified by colour. The modes have
been normalised so that vz is real at z = 0.2 Mm and have equal integrals. The dashed curve shows the
eigenmodes from the BVP solution, the dotted curve shows the eigenmodes from the SLiM simulations, and
the solid curve shows the Model S eigenmodes. Each panel corresponds to a different radial order [f , p1 to
p4].
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Figure 7 Left: the relative difference between the real part of the CSM_A eigenfrequencies [ωA] and the real
part of the Model S eigenfrequencies [ωS] as a function of kR� . The solid curves are the differences using
the eigenfrequencies calculated from SLiM and the dashed curves from the BVP. Right: the relative difference
between the real part of the CSM_A eigenfrequencies, ωA, and the real part of the CSM eigenfrequencies,
ω, calculated by SLiM as a function of kR� brought about by the increase in sound speed.

Figure 8 The relative difference between CSM_B and Model S of (a) the sound speed squared and (b) the
pressure gradient, as a function of z.

6. Convectively Stable Model B (CSM_B)

Starting from Model S and cA, we constructed a model with eigenfrequencies closer to
Model S than CSM_A and reasonable eigenfunctions (as described in Section 3). The eigen-
frequencies are related to the phase speed of the wave [ω/k] and so we slowed the waves
down by adding a broad reduction in sound speed of CSM_A. We chose

cB(z) = cA(z)

[
1 − 0.03 exp

(
−

(
z

5.0 Mm

)2)]
, (9)

where subscript “B” indicates CSM_B. Figure 8 shows the relative difference between
CSM_B and Model S (a) sound speed squared and (b) pressure gradient as a function of
height.

The eigenfunctions are slightly adversely affected as can be seen by comparing Figure 9
with Figure 6, however they are still more solar-like than those of CSM (Figure 3). The
real parts of the eigenfrequencies (Figure 10) reduce to within 1% of Model S. We have
not found a model that resulted in more similar eigenfrequencies without grossly changing
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Figure 9 The z-dependence of the real component of vz
√

ρ for a number of eigenmodes of CSM_B. The
eigenfrequencies for the wavenumbers kR� = 270, 500, and 750 are specified by colour. The modes have
been normalised so that vz is real at z = 0.2 Mm and have equal integrals. The dashed curve shows the
eigenmodes from the BVP solution, the dotted curve shows the eigenmodes from the SLiM simulations and
the solid curve shows the Model S eigenmodes. Each panel corresponds to a different radial order, f, p1 to p4.

the eigenfunctions. With this sound-speed profile, we have arrived at a convectively stable
model, CSM_B, with eigenfrequencies closer to those of Model S than CSM or CSM_A.
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Figure 10 Left: the relative difference between the real part of the CSM_B eigenfrequencies [ωB] and the
real part of the Model S eigenfrequencies [ωS] as a function of kR� . The solid curves are differences in
the eigenfrequencies calculated using SLiM simulations and the dashed curves are from the BVP. Right: the
relative frequency difference of the real part of the eigenfrequencies, calculated by SLiM as a function of
wavenumber between CSM_B and CSM_A brought about by the reduction in sound speed.

Figure 11 The relative
difference in area under
Re[vz

√
ρ] (see Figures 3, 6, 9)

averaged over 400 ≤ kR� ≤ 900,
〈D〉, between each background
model – CSM (asterisk), CSM_A
(diamond) and CSM_B (triangle)
– and Model S as a function of
radial order.

7. Comparison of Eigenfunctions

Quantitatively, we compare the eigenfunctions by finding the relative difference of the area
under Re[vz

√
ρ] between Model S and each convectively stable background in the near-

surface layers, −1.0 Mm ≤ z ≤ 0.5 Mm. The difference is defined by

D =
∫ 0.5 Mm

−1 Mm (Re[vz

√
ρ] − Re[vzS

√
ρS])2 dz

∫ 0.5 Mm
−1 Mm (Re[vzS

√
ρS])2 dz

. (10)

This integration range was chosen because this is where the stabilisation has greatest effect.
For each radial order we take the mean of D over 400 ≤ kR� ≤ 900, giving a quantitative
measure of the differences between the eigenfunctions of Model S and the stabilised model
[〈D〉]. Figure 11 shows that for the f , p1, and p2 modes CSM_A (triangle) has eigenfunc-
tions closest to that of Model S, while CSM (asterisk) has those farthest from Model S.

In addition, we measure the height of the uppermost peak [zp] of Re[vz

√
ρ]. Figure 12

shows zp for each radial order and each model as indicated. From this we see that stabilising
the background causes zp to drop in height (i.e. the difference between the solid and the long-
dash curves). Increasing the sound speed in a narrow region close to the surface (CSM_A)
pushes the peak back towards the surface (dotted curves). The broad decrease in sound
speed added in CSM_B does not change the location of the peak too much (short-dash
curves). The sudden transition to very high upper turning points at high wavenumber for
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Figure 12 The height of the
uppermost peak of Re[vz

√
ρ]

(see Figures 3, 6, 9) for each
radial order as a function of kR� .
The stabilisation reduces the
height of the peak from Model S
(long-dash) to CSM (solid). The
consequence of adjusting the
sound speed is shown in CSM_A
(dot) and CSM_B (short-dash).

Model S (particularly for the p1 and p2 modes) is due to the protuberance in the Model S
eigenfunctions very close to the surface (for example, the f and p1 modes in Figure 3)
which is absent in the stable models. The protuberance is due to rapid changes in the density
scale height close to the surface that disappear after the stabilisation (reduction of dzp).

We now have three convectively stable solar models each having similar, but slightly dif-
ferent, eigenfrequencies and eigenfunctions compared to Model S. Having models focused
on achieving slight variations of the same goal (more similar eigenfunctions or eigenfre-
quencies) gives us the possibility of testing the sensitivity of helioseismic analysis tech-
niques to the background properties.

8. Modelling the Random Wave Field

8.1. Random Wave Excitation Model

We model the random wave excitation by imposing a vertical force [fz] to the right-hand-
side of Equation (4). The force is specified by

fz(ki , z,ωj ) = ρGij e−(z−z∗)2/d2
, (11)

where ki is a horizontal wavevector, ωj is an angular frequency, d = 0.075 Mm is the width
of the source, and the acceleration Gij is a realisation of a complex Gaussian random vari-
able with zero mean and variance E[|Gij |2] = exp[−(ωj )

2/2σ 2] where σ/2π = 2.12 mHz
(Gizon and Birch, 2004). The height of the sources is at z∗ = −0.75 Mm, which is close
to the highly superadiabatic layer, where solar waves are expected to be strongly ex-
cited (Nigam and Kosovichev, 1999). In reality, the sources in the Sun will also have a
wavenumber dependence, which we have not included. In practice, the sources are gen-
erated before the simulation commences and saved with a 30-second cadence. The forc-
ing is applied at each time step (in cases herein this is approximately 0.13 solar sec-
onds), with the value of the applied forcing changing every 30 solar seconds. We remark
that we first tried to use a Lorentzian for the frequency dependence (Title et al., 1989;
Gizon and Birch, 2002), corresponding to sources that decay exponentially in time. We
found that the resulting power was too strong at high frequencies compared with observa-
tions, and that the Gaussian distribution produced a better agreement.
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8.2. Azimuthally Averaged Power Spectra

In this section we use SLiM to investigate the response of CSM_A and CSM_B to the ran-
dom wave excitation model as described in Section 8.1. A total of 16 hours was simulated,
however the first eight hours, during which the wave field is reaching a steady state, are
discarded. To mimic SOHO/MDI observations, we save vertical-velocity data at a height of
0.2 Mm above the surface (the height at which SOHO/MDI observes, see Bruls (1993)) and
account for the modulation transfer function of the instrument by multiplying the simulated
power spectra by the modulation transfer function of Rabello-Soares, Korzennik, and Schou
(2001).

To make a comparison with an observed power spectra, we took eight hours of Postel-
projected (centred at a longitude of 170◦ and latitude of −8.3◦) full-disk Doppler obser-
vations with a 60-second cadence from SOHO/MDI on 21 January 2002. The observations
consist primarily of quiet Sun covering a surface area identical to the simulations.

We consider the azimuthally averaged (with bin size 
k = 2π/[145.77 Mm]) power
spectra of the observations [P (kx, ky,ω) = |vlos(kx, ky,ω)|2] and of the simulations with
CSM_A and CSM_B, P (kx, ky,ω) = |vz(kx, ky,ω)|2 are shown in Figures 13, 14, and
15 respectively. The dashed curves are the eigenfrequencies calculated from Model S
for comparison. The straight solid line is where ω/k is equal to c(zb)/(1 + zb/R�) and
zb = −22.6 Mm; as stated previously, modelling a higher ω/k would require a deeper box.
There is some power evident in the low frequencies which are most likely g-modes in-
troduced by stabilising the background. These are the artificial product of having a stable
model. Thus, this region cannot be compared to solar observations. The remaining “compa-
rable domain”: b(k) < ω/2π < k c(zb)/(1 + zb/R�) where b(k) is the lower curve shown
in these figures, should contain modes that are comparable to those on the Sun. The az-
imuthally averaged power spectra are normalised to the mean power within a region defined
by (kR� −600)2/2002 + (ω/2π −3 mHz)2/(1 mHz)2 ≤ 1. By inspection, the power spectra
of CSM_A (Figure 14) and CSM_B (Figure 15) look qualitatively similar to the observed
spectrum (Figure 13). We now take a closer look at the properties.

8.3. Amplitudes of the Power Spectra

Figure 16 shows vertical cuts through the power spectra in Figures 13, 14, and 15 as a
function of frequency. The Model S eigenfrequencies (vertical lines) are larger than those of
the observations (solid curve), while CSM_A (dash curve) and CSM_B (dot curve) eigen-
frequencies are larger than those of Model S. It also shows that the maximum power and
linewidths of the ridges agree with observations best at low frequency.

Figure 17 shows the total power in the comparable range for the observations (solid
curve), CSM_A (dash curve), and CSM_B (dot curve) as a function of (a) frequency and
(b) kR�. The maximum power in the simulations occurs at a larger wavenumber than in
the observational power. Correcting this could be done by fine tuning the wave-excitation
model, and may be done in the future, however the results presented here are sufficiently
close for a large number of studies.

8.4. Fitting the Power Spectra

We analyse the properties of the azimuthally averaged power spectra in Figures 13, 14, and
15 by fitting asymmetric Lorentzians (e.g., Duvall et al., 1993; Gizon, 2006),

L(ω) =
4∑

n=0

Pn

[
(1 + BnXn)

2 + B2
n

1 + X2
n

]
+ N, (12)
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Figure 13 The azimuthally
averaged power spectrum of eight
hours of quiet-Sun SOHO/MDI
Doppler observations. The
eigenfrequencies of Model S are
the dashed curves. The straight
solid line and the bottom solid
curve form the boundaries of the
comparable domain of the
simulations. Stronger power is
black and weaker power is white.

Figure 14 The azimuthally
averaged power spectrum of
eight hours of simulated random
wave excitation in CSM_A,
accounting for the SOHO/MDI
modulation transfer function and
presented on the same log-power
scale as Figure 13. The
eigenfrequencies of Model S are
the dashed curves. The straight
solid line is where ω/k is equal
to cA(zb)/(1 + zb/R�); it and
the bottom solid curve [b(k)]
form the boundaries of the
comparable domain.

where

Xn = ω − ωn

�n/2
and Bn = �n/2

ωn − ωv

to cuts at fixed wavenumber as a function of frequency. In Equation (12), the maximum
power of the nth ridge is given by Pn and is located at a frequency ωn, the valley is at ωv,
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Figure 15 The azimuthally
averaged power spectrum of
eight hours of simulated random
wave excitation in CSM_B,
accounting for the SOHO/MDI
modulation transfer function and
presented on the same log-power
scale as Figures 13 and 14. The
eigenfrequencies of Model S are
the dashed curves. The straight
solid line is where ω/k is equal
to cB(zb)/(1 + zb/R�); it and
the bottom solid curve [b(k)]
form the boundaries of the
comparable domain.

the noise is N , and the FWHM of the asymmetric Lorentzian is �n. The fitting is done
using a Levenberg–Marquardt algorithm for least squares curve fitting using the IDL mpfit
package. The frequency range of the fit is from ≈0.6 of the f -mode Model S eigenfrequency
to ≈1.1 of the p4-mode Model S eigenfrequency. We define the asymmetry parameter as
χn = Bnωn/(�n/2) (Gizon, 2006).

Figure 18 shows the maximum power of each n from fitting Equation (12) to the power
spectrum of the observations (top), CSM_A (middle), and CSM_B (bottom). The simulated
power spectra have stronger power at high frequency than the observations. In addition,
the maximum power of n = 1 occurs at a lower frequency in the simulations than in the
observations.

Figure 19 shows the FWHM of the Lorentzian fit for each mode in the power spectrum of
the observations (top), CSM_A (middle), and CSM_ B (bottom). The FWHM of the ridges
in the observations is consistent with Figure 2 in Antia and Basu (1999), keeping in mind
that these are coarse measurements. The simulation ridges have larger FWHMs than the
observations for f and p1 modes.

Figure 20 shows the relative difference of the central ridge frequencies to Model S for the
observations (top), CSM_A (middle), and CSM_B (bottom). The results from the Lorentzian
fitting are within 1% of the BVP solutions as shown in Figure 21.

Figure 22 shows the χn asymmetries of the observations (top), CSM_A (middle), and
CSM_B (bottom). We achieve the correct sign and comparable magnitude of the asymmetry
for all the modes. The f mode has negative asymmetries, and the value of the asymmetries
increases with increasing mode number which is in agreement with Gizon (2006).

We have demonstrated the response of the numerical simulations of wave excitation in
the Sun using two of the convectively stable background models, CSM_A and CSM_B. The
eigenmodes of the background models and the parameters of the sources of acoustic wave
oscillations are sufficient to be used as a foundation for quantitative solar-like simulations.

In addition, we have successfully implemented the stable background models into the
framework of another code that also computes linear simulations of helioseismic wave prop-
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Figure 16 Cuts (smoothed over 0.035 mHz for the purpose of this plot) through the azimuthally averaged
power spectra in arbitrary units at the indicated wavenumbers for CSM_A (dash), CSM_B (dot), and obser-
vations (solid) as a function of frequency. The vertical black lines are the eigenfrequencies of Model S.

agation, the Seismic Propagation through Active Regions and Convection (SPARC) code
(Hanasoge et al., 2006; Hanasoge, Duvall, and Couvidat, 2007).

9. Discussion

We have created three convectively stable solar models that, to slightly differing extents,
have similar eigenmodes to those of Model S. We have also computed helioseismic simula-
tions using a model for the random excitation of waves, which together with the stable solar
models, reproduce the SOHO/MDI observed mode frequencies and asymmetries well for
each of the f and p1 to p4 ridges. The linewidths of the ridges and the power distribution
are reasonably similar to those of the Sun.

Although stabilising the background model is an important step in numerical studies
of wave propagation (and has been done before, e.g. by Parchevsky and Kosovichev, 2007;
Cameron, Gizon, and Duvall, 2008; Shelyag, Fedun, and Erdélyi, 2008; Schunker, Cameron,
and Gizon, 2010), its effects on the eigenfunctions and eigenfrequencies has received little
attention. An optimal way to produce a convectively stable background model for numeri-
cal simulations has not been formulated, but nevertheless the models presented here should
be useful for a range of studies. In particular, we envisage that these models will be used
to study the propagation of solar waves through three-dimensional heterogeneities, such as
convective flows, granulation, and model sunspots (e.g., Cameron et al., 2011; Dombroski,
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Figure 17 Power spectrum (a) averaged over wavenumber in the comparable range and (b) averaged over
frequency in the comparable range, for CSM_A (dash), CSM_B (dot), and observations (solid).

Birch, and Braun, 2011). Having three models with slightly different properties will enable
us to quantitatively test the sensitivity of the results to the details of the models. The mod-
els and extra information from the analysis in this article are available for download from
the HELAS local-helioseismology website (http://www.mps.mpg.de/projects/seismo/NA4/;
Schunker and Gizon, 2008).
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Appendix A: Calculating Eigenmodes Using Simulations

The following procedure calculates the eigenmodes of the system using SLiM and is de-
signed to be applied iteratively. We began by simulating the response of the system to a wave
packet constructed from Model S eigenmodes of one radial order (as in Cameron, Gizon, and
Duvall, 2008). The outputs [vx(k, z, t) and vz(k, z, t)] of a five-hour-long simulation were
saved with a one-minute cadence. We then took the Fourier transform of the velocity field
in time [vz(k, z,ω)]. From this we determined the eigenfrequencies from a linear fit in time

http://www.mps.mpg.de/projects/seismo/NA4/
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Figure 18 The maximum
power, Pn for n = 0,1,2,3
ridges calculated by fitting
Equation (12) to the azimuthally
averaged power spectra as a
function of frequency. The top
panel shows results from the
observations, the middle panel
from CSM_A, and the bottom
panel from CSM_B. Each ridge
is presented by a different symbol
as indicated in the legend.

to the phase φ(k, t) = Arg[vz(k, z = 200 km, t)] with the 2π wrap-around removed. The
function that we used to fit the phase [φ(k, t)] is given by φ(k, t) = Re[ωi(k)]t + φoff(k).
The height of 200 km corresponds to the observation height of SOHO/MDI (Bruls, 1993).
We determined the radial component vzf(k, z,ω) by applying a broad ridge filter to isolate
the appropriate radial order, centred on the improved (subscript i) estimate of the real part
of the eigenfrequencies Re[ωi(k)]. The same filter was applied to the horizontal velocity to
get vxf(k, z,ω). The velocities are then Fourier transformed from frequency space back to
time.

The improved eigenmodes are then given by

vxi(k, z) =
∫ 300 min

0 vxf(k, z, t) exp[−i(ωi(k)t + φoff)]dt
∫ 300 min

0 vzf(k, z = 200 km, t) exp[−i(ωi(k)t + φoff)]dt
,

vzi(k, z) =
∫ 300 min

0 vzf(k, z, t) exp[−i(ωi(k)t + φoff)]dt
∫ 300 min

0 vzf(k, z = 200 km, t) exp[−i(ωi(k)t + φoff)]dt
.

Note that φoff(k) and the denominator are defined from the vertical-velocity component,
vzi(k, z) = 1 at z = 200 km. From these eigenmodes we constructed a new wave packet
initial condition and the simulation was re-computed with this wave packet. In practice we
found that a single pass is sufficient and the improved eigenmodes from the first simulation
were used to compare to Model S.
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Figure 19 The FWHM [�n] for
n = 0,1,2,3 ridges calculated by
fitting Equation (12) to the
azimuthally averaged power
spectra as a function of
frequency. The top panel shows
results from the observations, the
middle panel from CSM_A and
the bottom panel from CSM_B.
The symbol legend is the same as
in Figure 18.

Appendix B: Determining the Eigenmodes of the Boundary Value Problem

The perturbations of a particular eigenmode with radial order n of the Equation (4) have the
form

v(k, z, t) = [
vz(k, z)ẑ + vx(k, z)x̂

]
e−i(ωt −k· x), (13)

p′(k, z, t) = p′(k, z)e−i(ωt−k· x) (14)

with vn = (∂t + γ )ξ n.
After some manipulation (using the continuity equation, equation of motion, and the

energy equation), our system of equations becomes

ρβvz = −dp′

dz
− g

[
ρvz

β2

dγ

dz
− vz

β

dρ

dz
− ρ

β

dvz

dz
− k2p′

r2β2

]
, (15)

p′ = −c2

[
2ρvz

rβ
− ρvz

β2

dγ

dz
+ ρ

β

dvz

dz
+ p′k2

r2β2

]
+ vz

β

dp

dz
, (16)

where β = γ − iω.
Following the method of Birch, Kosovichev, and Duvall (2004), we substitute

y1 = ip′
√

ρc
,
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Figure 20 The relative
difference of the central ridge
frequencies [ωn] for
n = 0,1,2,3 ridges calculated by
fitting Equation (12) to the
azimuthally averaged power
spectra, to those of Model S as a
function of kR�. The symbol
legend is the same as in
Figure 18. The top panel shows
results from the observations, the
middle panel from CSM_A, and
the bottom panel from CSM_B.

Figure 21 The relative
difference between the
eigenfrequencies of the BVP
solutions [fBVP] and the
frequency of the maximum ridge
power as identified from fitting
the power spectrum [ffit] for
CSM_A. The symbol legend is
the same as in Figure 18.

y2 = vz

√
ρc

into Equations (15) and (16) to get

y1
√

ρc

i

(
1 + c2k2

β2

)
+ y2√

ρc

(
2c2ρ

rβ
− c2ρ

β2

dγ

dz
− 1

β

dp

dz

)

+ c2ρ

β

d

dz

(
y2√
ρc

)
= 0 (17)
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Figure 22 The χn asymmetries
for n = 0,1,2,3 ridges
calculated by fitting
Equation (12) to the azimuthally
averaged power spectra as a
function of kR�. The symbol
legend is the same as in
Figure 18. The top panel shows
results from the observations, the
middle panel from CSM_A, and
the bottom panel from CSM_B.

and

gk2

β2

y1
√

ρc

i
+ y2√

ρc

(
ρβ + 2gρ

rβ
+ g

β

dρ

dz
− ρ

β2

dγ

dz

)

+ gρ

β

d

dz

(
y2√
ρc

)
+ d

dz

(
y1

√
ρc

i

)
= 0. (18)

Then multiplying Equation (17) by
√

ρc and Equation (18) by i/
√

ρc and rearranging, we
get

dy2

dz
= y2

(
1

β

dγ

dz
− 1

2Hc

− 1

2Hρ

− 1

ρc2

dp

dz

)
+ iy1

(
β

c
+ ck2

β

)
(19)

and

dy1

dz
= −y1

(
1

2Hc

+ 1

2Hρ

+ g

c2

)
+ iy2

(
2g

rβc
+ g

βc3ρ

dp

dz
+ g

βρc

dρ

dz
− β

c

)
, (20)

where 1/Hc = −dzc/c and 1/Hρ = −dzρ/ρ. Equations (19) and (20) reduce to Equa-
tions (A10) and (A11) in Birch, Kosovichev, and Duvall (2004) in the case where the atten-
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Figure 23 The relative
difference between the CSM_A
eigenfrequencies with various
modified quantities [ωq] and the
BVP eigenfrequencies of the
original CSM_A [ω]. The panels
show the relative difference for
with (a) 1% noise added to the
eigenfrequency guess, (b) no
damping layers or attenuation,
(c) constant gravity, (d) no
damping layers, but retaining the
attenuation, (e) Cartesian
geometry, and (f) top sponge
extended lower in height. The
frequency shifts are much smaller
than those introduced by the
convectively stable models.

uation is not dependent on z, the background is in hydrostatic equilibrium, and the geometry
is Cartesian.

The top boundary condition is a free surface such that the Lagrangian pressure perturba-
tion [δp] is zero. This means that p′ = −ξ ·∇p. The bottom boundary is specified by vz = 0
and p′ = 1. The boundary conditions translated to y1 and y2 are that ρcy1 + iy2β dzp = 0 at
the top and y2 = 0 and y1 = 1 at the bottom.

We solve this boundary-value problem using the Matlab program bvp4c. In order to be
consistent with the eigenfunction solutions from the SLiM simulations, we do a similar nor-
malisation of the eigenfunctions so that vz(k, z = 200 km) = 1.

Appendix C: Solutions to the BVP for Different Background Models

We use the BVP solver outlined in Appendix B to explore the effects on the eigenfrequen-
cies by changing different parameters of the problem with CSM_A. To test the robustness
of the BVP solver, we added 1% noise to the eigenfrequency guess that results in a rel-
ative difference of less than 10−5 as shown in Figure 23(a). In Figure 23(b) we do not
apply any wave attenuation, i.e. γ = 0. The eigenfrequencies decrease in value compared
to the CSM_A eigenfrequencies, more so for the higher-order modes. In Figure 23(c) we
have set a constant gravitational acceleration of g = −273.98 m s−2. This mostly affects
the f mode, but the eigenfrequencies are also decreased for the p-modes. Removing the



Solar Structure Models for Computational Helioseismology 25

sponge layers, so that γ = �(k), give results that are similar to (b), see Figure 23(d). Us-
ing the full Cartesian operators, as opposed to the spherical derivative in the radial direc-
tion as in Equation (2), affects the eigenfrequencies at low wavenumber the greatest, as
shown in Figure 23(e). In Figure 23(f) we have lowered the top damping layer to have
γ (k, z)/2π = �(k)/4π + e[(z+1.28 Mm)/0.25 Mm] µHz for 0.125 < z < 2.5 Mm (retaining the
bottom damping layer), which decreases the eigenfrequencies. These frequency shifts are
small compared to the frequency shifts caused by the convectively stabilising the models.
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