35 research outputs found

    Identifying factors associated with sedentary time after stroke. Secondary analysis of pooled data from nine primary studies.

    Get PDF
    <p><b>Background</b>: High levels of sedentary time increases the risk of cardiovascular disease, including recurrent stroke.</p> <p><b>Objective</b>: This study aimed to identify factors associated with high sedentary time in community-dwelling people with stroke.</p> <p><b>Methods</b>: For this data pooling study, authors of published and ongoing trials that collected sedentary time data, using the activPAL monitor, in community-dwelling people with stroke were invited to contribute their raw data. The data was reprocessed, algorithms were created to identify sleep-wake time and determine the percentage of waking hours spent sedentary. We explored demographic and stroke-related factors associated with total sedentary time and time in uninterrupted sedentary bouts using unique, both univariable and multivariable, regression analyses.</p> <p><b>Results</b>: The 274 included participants were from Australia, Canada, and the United Kingdom, and spent, on average, 69% (SD 12.4) of their waking hours sedentary. Of the demographic and stroke-related factors, slower walking speeds were significantly and independently associated with a higher percentage of waking hours spent sedentary (p = 0.001) and uninterrupted sedentary bouts of <i>>30</i> and <i>>60 min</i> (p = 0.001 and p = 0.004, respectively). Regression models explained 11–19% of the variance in total sedentary time and time in prolonged sedentary bouts.</p> <p><b>Conclusion</b>: We found that variability in sedentary time of people with stroke was largely unaccounted for by demographic and stroke-related variables. Behavioral and environmental factors are likely to play an important role in sedentary behavior after stroke. Further work is required to develop and test effective interventions to address sedentary behavior after stroke.</p

    Motoric Cognitive Risk Syndrome: Multicountry Prevalence and Dementia Risk

    Get PDF
    OBJECTIVES: Our objective is to report prevalence of motoric cognitive risk syndrome (MCR), a newly described predementia syndrome characterized by slow gait and cognitive complaints, in multiple countries, and its association with dementia risk. METHODS: Pooled MCR prevalence analysis of individual data from 26,802 adults without dementia and disability aged 60 years and older from 22 cohorts from 17 countries. We also examined risk of incident cognitive impairment (Mini-Mental State Examination decline ≥4 points) and dementia associated with MCR in 4,812 individuals without dementia with baseline Mini-Mental State Examination scores ≥25 from 4 prospective cohort studies using Cox models adjusted for potential confounders. RESULTS: At baseline, 2,808 of the 26,802 participants met MCR criteria. Pooled MCR prevalence was 9.7% (95% confidence interval [CI] 8.2%-11.2%). MCR prevalence was higher with older age but there were no sex differences. MCR predicted risk of developing incident cognitive impairment in the pooled sample (adjusted hazard ratio [aHR] 2.0, 95% CI 1.7-2.4); aHRs were 1.5 to 2.7 in the individual cohorts. MCR also predicted dementia in the pooled sample (aHR 1.9, 95% CI 1.5-2.3). The results persisted even after excluding participants with possible cognitive impairment, accounting for early dementia, and diagnostic overlap with other predementia syndromes. CONCLUSION: MCR is common in older adults, and is a strong and early risk factor for cognitive decline. This clinical approach can be easily applied to identify high-risk seniors in a wide variety of settings

    Multi-Omics and Pathway analyses of Genome-Wide associations Implicate Regulation and Immunity in Verbal Declarative Memory Performance

    Get PDF
    BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. to identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals

    The complex genetics of gait speed:Genome-wide meta-analysis approach

    Get PDF
    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging

    White Matter Lesion Progression: Genome-Wide Search for Genetic Influences

    Get PDF
    White matter lesion (WML) progression on magnetic resonance imaging (MRI) is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium

    GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium

    Get PDF
    Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27 581 individuals of European descent over 65 years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5 × 10−8) and 39 suggestive (P-value< 5 × 10−5) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (β = 0.47, SE = 0.08, P-value = 5.20 × 10−10). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-β (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength

    Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and canadian gait consortiums initiative

    Get PDF
    Abstract: Background: Gait disorders, a highly prevalent condition in older adults, are associated with several adverse health consequences. Gait analysis allows qualitative and quantitative assessments of gait that improves the understanding of mechanisms of gait disorders and the choice of interventions. This manuscript aims (1) to give consensus guidance for clinical and spatiotemporal gait analysis based on the recorded footfalls in older adults aged 65 years and over, and (2) to provide reference values for spatiotemporal gait parameters based on the recorded footfalls in healthy older adults free of cognitive impairment and multi-morbidities.Methods: International experts working in a network of two different consortiums (i.e., Biomathics and Canadian Gait Consortium) participated in this initiative. First, they identified items of standardized information following the usual procedure of formulation of consensus findings. Second, they merged databases including spatiotemporal gait assessments with GAITRite® system and clinical information from the “Gait, cOgnitiOn & Decline” (GOOD) initiative and the Generation 100 (Gen 100) study. Only healthy—free of cognitive impairment and multi-morbidities (i.e., ≤ 3 therapeutics taken daily)—participants aged 65 and older were selected. Age, sex, body mass index, mean values, and coefficients of variation (CoV) of gait parameters were used for the analyses. Results: Standardized systematic assessment of three categories of items, which were demographics and clinical information, and gait characteristics (clinical and spatiotemporal gait analysis based on the recorded footfalls), were selected for the proposed guidelines. Two complementary sets of items were distinguished: a minimal data set and a full data set. In addition, a total of 954 participants (mean age 72.8 ± 4.8 years, 45.8% women) were recruited to establish the reference values. Performance of spatiotemporal gait parameters based on the recorded footfalls declined with increasing age (mean values and CoV) and demonstrated sex differences (mean values). Conclusions: Based on an international multicenter collaboration, we propose consensus guidelines for gait assessment and spatiotemporal gait analysis based on the recorded footfalls, and reference values for healthy older adults

    Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.

    Get PDF
    OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p [BI] = 4.4 × 10-10; p [SSBI] = 1.2 × 10-4), diabetes (p [BI] = 1.7 × 10-8; p [SSBI] = 2.8 × 10-3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI
    corecore