118 research outputs found
Recommended from our members
Hotels' dependency on online intermediaries and their chosen distribution channel portfolios: Three country insights
New intermediaries are entering the market, challenging the hospitality industry to find an appropriate distribution channel portfolio. This research investigates how many channels hotels in Austria, Germany and Switzerland choose and what role the various channels play. Findings based on 1014 questionnaires reveal an average mix of 8.06 offline and online channel categories. Traditional channels, such as walk-ins and telephone, still play a major role; however, about one fifth of the bookings are completely generated online. On average, 3.61 online travel agencies (OTAs) are used. With regards to OTA penetration, an oligopolistic market structure is prevalent. Swiss and German hotels' OTA dependency is higher than Austrian's. A series of a posteriori cluster analysis results in four distribution portfolio groups hoteliers choose: multi-channel-, electronic-, real time-, and traditional distributors. Distribution portfolio profiles facilitate learning from strategies used by hotels with certain characteristics such as target group and star-rating
Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis
<p>Abstract</p> <p>Background</p> <p>Large-scale intervention programmes to control or eliminate several infectious diseases are currently underway worldwide. However, a major unresolved question remains: what are reasonable stopping points for these programmes? Recent theoretical work has highlighted how the ecological complexity and heterogeneity inherent in the transmission dynamics of macroparasites can result in elimination thresholds that vary between local communities. Here, we examine the empirical evidence for this hypothesis and its implications for the global elimination of the major macroparasitic disease, lymphatic filariasis, by applying a novel Bayesian computer simulation procedure to fit a dynamic model of the transmission of this parasitic disease to field data from nine villages with different ecological and geographical characteristics. Baseline lymphatic filariasis microfilarial age-prevalence data from three geographically distinct endemic regions, across which the major vector populations implicated in parasite transmission also differed, were used to fit and calibrate the relevant vector-specific filariasis transmission models. Ensembles of parasite elimination thresholds, generated using the Bayesian fitting procedure, were then examined in order to evaluate site-specific heterogeneity in the values of these thresholds and investigate the ecological factors that may underlie such variability</p> <p>Results</p> <p>We show that parameters of density-dependent functions relating to immunity, parasite establishment, as well as parasite aggregation, varied significantly between the nine different settings, contributing to locally varying filarial elimination thresholds. Parasite elimination thresholds predicted for the settings in which the mosquito vector is anopheline were, however, found to be higher than those in which the mosquito is culicine, substantiating our previous theoretical findings. The results also indicate that the probability that the parasite will be eliminated following six rounds of Mass Drug Administration with diethylcarbamazine and albendazole decreases markedly but non-linearly as the annual biting rate and parasite reproduction number increases.</p> <p>Conclusions</p> <p>This paper shows that specific ecological conditions in a community can lead to significant local differences in population dynamics and, consequently, elimination threshold estimates for lymphatic filariasis. These findings, and the difficulty of measuring the key local parameters (infection aggregation and acquired immunity) governing differences in transmission thresholds between communities, mean that it is necessary for us to rethink the utility of the current anticipatory approaches for achieving the elimination of filariasis both locally and globally.</p
Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium
Background
The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic.
Methods
For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere.
Findings
Overall, 116 841 cases were analysed: 76 481 in 2018–19, before the pandemic, and 40 360 in 2020–21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40–0·55), H influenzae (0·51; 0·40–0·66) and N meningitidis (0·26; 0·21–0·31), while no significant changes were observed for S agalactiae (1·02; 0·75–1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145–55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories.
Interpretation
COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies.
Funding
Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization
Carcass persistence and detectability : reducing the uncertainty surrounding wildlife-vehicle collision surveys
Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions
(WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low
median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers' presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2±10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies
Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure
The essential role of the lipophosphoglycan (LPG) of Leishmania in innate immune response has been extensively reported. However, information about the role of the LPG-related glycoinositolphospholipids (GIPLs) is limited, especially with respect to the New World species of Leishmania. GIPLs are low molecular weight molecules covering the parasite surface and are similar to LPG in sharing a common lipid backbone and a glycan motif containing up to 7 sugars. Critical aspects of their structure and functions are still obscure in the interaction with the vertebrate host. In this study, we evaluated the role of those molecules in two medically important South American species Leishmania infantum and L. braziliensis, causative agents of visceral (VL) and cutaneous Leishmaniasis (CL), respectively. GIPLs derived from both species did not induce NO or TNF-α production by non-primed murine macrophages. Additionally, primed macrophages from mice (BALB/c, C57BL/6, TLR2−/− and TLR4−/−) exposed to GIPLs from both species, with exception to TNF-α, did not produce any of the cytokines analyzed (IL1-β, IL-2, IL-4, IL-5, IL-10, IL-12p40, IFN-γ) or p38 activation. GIPLs induced the production of TNF-α and NO by C57BL/6 mice, primarily via TLR4. Pre incubation of macrophages with GIPLs reduced significantly the amount of NO and IL-12 in the presence of IFN-γ or lipopolysaccharide (LPS), which was more pronounced with L. braziliensis GIPLs. This inhibition was reversed after PI-specific phospholipase C treatment. A structural analysis of the GIPLs showed that L. infantum has manose rich GIPLs, suggestive of type I and Hybrid GIPLs while L. braziliensis has galactose rich GIPLs, suggestive of Type II GIPLs. In conclusion, there are major differences in the structure and composition of GIPLs from L. braziliensis and L. infantum. Also, GIPLs are important inhibitory molecules during the interaction with macrophages
Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.
BACKGROUND
The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic.
METHODS
For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere.
FINDINGS
Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories.
INTERPRETATION
COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies.
FUNDING
Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization
- …