1,116 research outputs found
Bose-Einstein Condensation and Free DKP field
The thermodynamical partition function of the Duffin-Kemmer-Petiau theory is
evaluated using the imaginary-time formalism of quantum field theory at finite
temperature and path integral methods. The DKP partition function displays two
features: (i) full equivalence with the partition function for charged scalar
particles and charged massive spin 1 particles; and (ii) the zero mode sector
which is essential to reproduce the well-known relativistic Bose-Einstein
condensation for both theories.Comment: 12 pages, 2 eps figures. To be published in Physics Letter
The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant
We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at
Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young
oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the
resultant data cube, we have been able to reconstruct the full 3D structure of
the system of [O III] filaments. The majority of the ejecta form a ring of
~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We
conclude that SNR N132D is approaching the end of the reverse shock phase
before entering the fully thermalized Sedov phase of evolution. We speculate
that the ring of oxygen-rich material comes from ejecta in the equatorial plane
of a bipolar explosion, and that the overall shape of the SNR is strongly
influenced by the pre-supernova mass loss from the progenitor star. We find
tantalizing evidence of a polar jet associated with a very fast oxygen-rich
knot, and clear evidence that the central star has interacted with one or more
dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8
figure
Smectic ordering in liquid crystal - aerosil dispersions I. X-ray scattering
Comprehensive x-ray scattering studies have characterized the smectic
ordering of octylcyanobiphenyl (8CB) confined in the hydrogen-bonded silica
gels formed by aerosil dispersions. For all densities of aerosil and all
measurement temperatures, the correlations remain short range, demonstrating
that the disorder imposed by the gels destroys the nematic (N) to smectic-A
(SmA) transition. The smectic correlation function contains two distinct
contributions. The first has a form identical to that describing the critical
thermal fluctuations in pure 8CB near the N-SmA transition, and this term
displays a temperature dependence at high temperatures similar to that of the
pure liquid crystal. The second term, which is negligible at high temperatures
but dominates at low temperatures, has a shape given by the thermal term
squared and describes the static fluctuations due to random fields induced by
confinement in the gel. The correlation lengths appearing in the thermal and
disorder terms are the same and show strong variation with gel density at low
temperatures. The temperature dependence of the amplitude of the static
fluctuations further suggests that nematic susceptibility become suppressed
with increasing quenched disorder. The results overall are well described by a
mapping of the liquid crystal-aerosil system into a three dimensional XY model
in a random field with disorder strength varying linearly with the aerosil
density.Comment: 14 pages, 13 figure
Dark soliton states of Bose-Einstein condensates in anisotropic traps
Dark soliton states of Bose-Einstein condensates in harmonic traps are
studied both analytically and computationally by the direct solution of the
Gross-Pitaevskii equation in three dimensions. The ground and self-consistent
excited states are found numerically by relaxation in imaginary time. The
energy of a stationary soliton in a harmonic trap is shown to be independent of
density and geometry for large numbers of atoms. Large amplitude field
modulation at a frequency resonant with the energy of a dark soliton is found
to give rise to a state with multiple vortices. The Bogoliubov excitation
spectrum of the soliton state contains complex frequencies, which disappear for
sufficiently small numbers of atoms or large transverse confinement. The
relationship between these complex modes and the snake instability is
investigated numerically by propagation in real time.Comment: 11 pages, 8 embedded figures (two in color
Learning Objects, Learning Objectives and Learning Design.
Educational research and development into e-learning mainly focuses on the inclusion of new technological features without taking into account psycho-pedagogical concerns that are likely to improve a learner's cognitive process in this new educational category. This paper presents an instructional model that combines objectivist and constructivist learning theories. The model is based on the concept of a learning objective which is composed of a set of learning objects. A software tool, called the Instruction Aid System (IAS), has been developed to guide instructors through the development of learning objectives and the execution of the analysis and design phases of the proposed instructional model. Additionally, a blended approach to the learning process in Web-based distance education is also presented. This approach combines various event-based activities: self-paced learning, live e-learning and the use of face-to-face contact in classrooms
Inverse spectral problems for Dirac operators with summable matrix-valued potentials
We consider the direct and inverse spectral problems for Dirac operators on
with matrix-valued potentials whose entries belong to ,
. We give a complete description of the spectral data
(eigenvalues and suitably introduced norming matrices) for the operators under
consideration and suggest a method for reconstructing the potential from the
corresponding spectral data.Comment: 32 page
Generalized measurements by linear elements
I give a first characterization of the class of generalized measurements that
can be exactly realized on a pair of qudits encoded in indistinguishable
particles, by using only linear elements and particle detectors. Two immediate
results follow from this characterization. (i) The Schmidt number of each POVM
element cannot exceed the number of initial particles. This rules out any
possibility of performing perfect Bell-measurements for qudits. (ii) The
maximum probability of performing a generalized incomplete Bell-measurement is
1/2.Comment: 4 pages. Submitted to Phys. Rev.
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
