1,902 research outputs found

    Heterogeneity in Surface Sensing Suggests a Division of Labor in Pseudomonas aeruginosa Populations

    Get PDF
    The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration

    Sustainable Supplier Selection under Financial Hardships: The Conflicting Impact of Spatial and Temporal Psychological Distances

    Full text link
    Economic crises stress trade-offs between costs and sustainability for environmentally orientated firms impacting supply-chain management decisions. Inspired by the disruption to supply caused by the COVID-19 pandemic, we explore supplier selection during a financial crisis, studying the impact of psychological distance on the cost–environmental performance trade-off. Across three experiments (N = 420), we examine the choice between a low-cost and an environmental supplier at close and far psychological distances. Study 1 and Study 2 demonstrate that closer spatial and social distances, respectively, increase the preference for the environmental supplier. Study 3 extends these studies by showing that distance influences perceptions of the firm’s objectives, mediating supplier preference. In contrast, Study 4 shows that a far temporal distance increases the preference for selecting the environmental supplier, differing from spatial distance, due to a reversal in the appraisal of the firm’s objectives. Taken together, our results provide a greater understanding of the cognitive influences on sustainable procurement decision-making during the COVID-19 crisis

    Temporal distance in dual sourcing: A behavioural investigation

    Full text link
    We explored the influence of temporal distances on order allocation between a low-cost, less reliable supplier and a reliable, high-cost supplier. We posited that a far temporal distance increases the preference for the unreliable, low-cost supplier. We conducted a vignette-based experiment where participants placed orders between the suppliers with different reliability and cost levels. Our experiment showed that a longer lead time led to larger orders for the low-cost unreliable supplier. Our insights help explain how temporal distances inherent in supply chains can elicit differing evaluations of suppliers, altering ordering decisions

    Pride or Guilt? Impacts of Consumers' Socially Influenced Recycling Behaviors on Closed-Loop Supply Chains

    Full text link
    Problem definition: Social influenced emotions of pride and guilt have been identified by the environmental psychology (EP) literature as crucial drivers impacting recycling behavior, but they have mostly been overlooked in operations management (OM) research. In contrast, EP studies often ignore firms' operational decisions. We analyze the impacts of both social influence and firms' operational decisions to provide a comprehensive understanding of consumers' recycling behaviors, which is essential for realizing remanufacturing's full potential. Methodology/results: We consider a closed-loop supply chain consisting of a manufacturer selling a single product to a consumer community. Consumers' recycling behavior depends on both the recycling reward offered by the manufacturer, as well as intrinsic and socially influenced pride (guilt) from recycling (not recycling). We develop an evolutionary game to model consumers' recycling behavior and characterize the resulting equilibrium recycling rate, which is then integrated into the manufacturer's decision problem. We characterize the manufacturer's optimal strategy and the equilibrium recycling rate in four distinct regions defined by both the product's overall difficulty of remanufacturing and the underlying strengths of consumers' socially influenced pride and guilt. We show that in settings where the product has a moderately high difficulty of remanufacturing and consumers have stronger socially influenced pride than guilt, the manufacturer optimally induces an interior recycling rate. In such scenarios, there exist win-win pathways in using social influence-based interventions to increase both the manufacturer's profit and the recycling rate. However, misalignment may occur when consumers substantially care for the product's recyclability. Managerial implications: This study bridges sustainable OM and EP literature by analyzing how consumers' socially influenced emotions of pride and guilt affect a manufacturer's optimal decisions, profits, and the resulting recycling rate. We provide important insights for designing effective and efficient social influence-based interventions to improve recycling rates

    Expanding student teachers’ implicit theories about explanations for the science classrooms

    Get PDF
    This study explored student teachers’ implicit theories about explaining for the science classroom in three courses at diverse universities. Based on microteaching situations, the participants simulated explanations and discussed the elements they considered relevant for giving peer feedback. This led to the design of rubrics for peer assessment, which expressed their implicit theories about what a good explanation for the science classroom would look like. The three rubrics are presented and discussed in the light of the connections between teachers’ thinking and practice. Shulman’s ideas about professional teaching knowledge development, as well as negotiation of meaning, provide theoretical under-pinning for understanding and expanding student teachers’ thinking about explanations for the science classrooms.</p

    Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging.

    Get PDF
    Background Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. Methods One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Results Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HADTI-STSRI = −1.4° ± 23.2° and TADTI-STSRI = −1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. Conclusions We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical applications

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    The impact of signal-to-noise ratio, diffusion-weighted directions and image resolution in cardiac diffusion tensor imaging - insights from the ex-vivo rat heart

    Get PDF
    Background: Cardiac diffusion tensor imaging (DTI) is limited by scan time and signal-to-noise (SNR) restrictions. This invariably leads to a trade-off between the number of averages, diffusion-weighted directions (ND), and image resolution. Systematic evaluation of these parameters is therefore important for adoption of cardiac DTI in clinical routine where time is a key constraint. Methods: High quality reference DTI data were acquired in five ex-vivo rat hearts. We then retrospectively set 2 ≤ SNR ≤ 97, 7 ≤ ND ≤ 61, varied the voxel volume by up to 192-fold and investigated the impact on the accuracy and precision of commonly derived parameters. Results: For maximal scan efficiency, the accuracy and precision of the mean diffusivity is optimised when SNR is maximised at the expense of ND. With typical parameter settings used clinically, we estimate that fractional anisotropy may be overestimated by up to 13% with an uncertainty of ±30%, while the precision of the sheetlet angles may be as poor as ±31°. Although the helix angle has better precision of ±14°, the transmural range of helix angles may be under-estimated by up to 30° in apical and basal slices, due to partial volume and tapering myocardial geometry. Conclusions: These findings inform a baseline of understanding upon which further issues inherent to in-vivo cardiac DTI, such as motion, strain and perfusion, can be considered. Furthermore, the reported bias and reproducibility provides a context in which to assess cardiac DTI biomarkers

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    corecore