960 research outputs found

    Commissioning of the ALICE readout software for LHC Run 3

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a heavy-ion detector studying the physics of strongly interacting matter and the quarkgluon plasma at the CERN LHC (Large Hadron Collider). During the second long shut-down of the LHC, the ALICE detector was upgraded to cope with an interaction rate of 50 kHz in Pb-Pb collisions, producing in the online computing system (O2) a sustained input throughput of 3.5 TB/s. In the past years, the O2/FLP project built the new data-acquisition system capable of handling this load. It consists of 200 readout nodes, collecting the data transferred from over 8000 detector links to PCs memory by dedicated PCI boards. The readout software manages the hardware and software memory buffers used for DMA and inter-process communication. It initiates the data flow, performs on-the-fly consistency checks, formats the data, reports performance, and finally pushes the data to the local processing pipeline. The output is then sent by the data distribution software over 100Gb/s links to a dedicated event processing farm. The readout software modular design allowed to address the manifold needs faced during the prototyping, installation and commissioning phases, which proved essential from the lab tests to physics production, like file replay and recording, or online multi-threaded LZ4 compression. We will describe the hardware and software implementation of the O2 readout system, and review the challenges met during the commissioning and first months of operation with LHC collisions in 2022

    The ALICE-LHC Online Data Quality Monitoring Framework: Present and Future

    Get PDF
    ALICE is one of the experiments under installation at CERN Large Hadron Collider, dedicated to the study of heavy-ion collisions. The final ALICE data acquisition system has been installed and is being used for the testing and commissioning of detectors. The online data quality monitoring is an important part of the DAQ software framework (DATE). In this presentation we overview the implementation and usage experience of the interactive tool MOOD used for the commissioning period of ALICE and we present the architecture of the automatic data quality monitoring framework, a distributed application aimed to produce, collect, analyze, visualize and store monitoring data in a large, experiment wide scale

    The new ALICE data acquisition system (O2/FLP) for LHC Run 3

    Get PDF
    ALICE (A Large Ion Collider Experiment) has undertaken a major upgrade during the LHC Long Shutdown 2. The increase in the detector data rates led to a hundredfold increase in the input raw data, up to 3.5 TB/s. To cope with it, a new common Online and Offline computing system, called O2, has been developed and put in production. The O2/FLP (First Level Processor) system, successor of the ALICE DAQ system, implements the critical functions of detector readout, data quality control and operational services running in the CR1 data centre at the experimental site. Data from the 15 ALICE subdetectors are read out via 8000 optical links by 500 custom PCIe cards hosted in 200 nodes. It addresses novel challenges such as the continuous readout of the TPC detector while keeping compatibility with legacy detector front-end electronics. This paper discusses the final architecture and design of the O2/FLP system and provides an overview of all its components, both hardware and software. It presents the selection process for the FLP nodes, the different commissioning steps and the main accomplishments so far. It will conclude with the challenges that lie ahead and how they will be addressed

    Autonomic Management of Large Clusters and Their Integration into the Grid

    Get PDF
    We present a framework for the co-ordinated, autonomic management of multiple clusters in a compute center and their integration into a Grid environment. Site autonomy and the automation of administrative tasks are prime aspects in this framework. The system behavior is continuously monitored in a steering cycle and appropriate actions are taken to resolve any problems. All presented components have been implemented in the course of the EU project DataGrid: The Lemon monitoring components, the FT fault-tolerance mechanism, the quattor system for software installation and configuration, the RMS job and resource management system, and the Gridification scheme that integrates clusters into the Grid

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe
    corecore