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INFN Turin
Turin, Italy

Abstract— ALICE is one of the experiments under installation
at CERN Large Hadron Collider, dedicated to the study of Heavy-
Ion Collisions. The final ALICE Data Acquisition system has been
installed and is being used for the testing and commissioning of
detectors. The Online Data Quality monitoring is an important
part of the DAQ software framework (DATE). In this presen-
tation we overview the implementation and usage experience of
the interactive tool MOOD used for the commissioning period of
ALICE and we present the architecture of the Automatic Data
Quality Monitoring framework, a distributed application aimed
to produce, collect, analyze, visualize and store monitoring data
in a large, experiment wide scale.

I. INTRODUCTION

A. The ALICE experiment

High Energy Experimental Physics has established and vali-
dated over the last decades the theory of fundamental particles
and their interactions known as the Standard Model of Particle
Physics. Heavy-Ion High Energy Physics aims to extend the
Standard Model to complex and dynamically evolving systems
of finite size. Of specific interest is the Physics of strongly
interacting matter under extreme conditions of energy density.

ALICE (A Large Ion Collider Experiment) [1]–[3] is the
LHC (Large Hadron Collider) experiment dedicated to the
study of Heavy-Ion Collisions at CERN. It will focus on
the study of collective strong interactions and quark-gluon
plasma formation signatures. It consists of several detectors
of different types and is designed to cope with very high par-
ticle multiplicities (������� up to ����). Commissioning of
detectors is progressing now in the underground experimental
pit at the Swiss-French borders. The detectors along with the
required support services are expected to be operational by
LHC startup.

ALICE (Fig. 1) consists of a central cylindrical barrel
embedded in the large L3 experimental magnet and a set of
detectors installed on forward regions. The central part covers
the polar angle range ����� ����� over the full azimuth and
consists of the following detectors starting from the inner-
most: Inner Tracking System (ITS) composed of six layers of
different types of silicon detectors (pixels, strips and silicon
drift chambers), Time Projection Chamber (TPC), Transition

Fig. 1. ALICE Longitudinal view

Radiation Detector (TRD) and Time Of Flight (TOF) which
is based on multi-gap resistive-plate chambers. In the central
part also resides the High Momentum Particle Identifica-
tion Detector (HMPID) which uses Ring Imaging Cherenkov
(RICH) technology, the PHOton Spectrometer (PHOS) and
the ElectroMagnetic Calorimeter (EmCal). These last three
detectors provide partial azimuthal coverage. In the forward
region resides the Muon Arm which is composed of a dipole
magnet, absorber and tracking-triggering stations and also
several smaller detectors: The Photon Multiplicity Detector
(PMD), the Zero Degree Calorimeter (ZDC), the Forward
Multiplicity Detector (FMD), V0 and T0. Finally, on top of
the L3 magnet resides ACCORDE serving as a cosmic ray
trigger.

ALICE will operate in several running modes with sig-
nificantly different characteristics. The experiment has been
designed primarily to run with heavy-ion beams, which are
characterized by relatively low interaction rates (� �� ���
for � � ����	
�����), short running time (in the order of a
few weeks per year) but very complicated event topology with
high multiplicity and event size. For �� or � running mode,
the interaction rates are much higher (up to 	�� ���) but
the event size is small and the running time is several months
per year.

B. The ALICE Data Acquisition system

One of the functions of the DAQ system [4] (Fig. 2) is
to realize and control the dataflow from the detector up to



Fig. 2. ALICE DAQ Hardware Architecture

the data storage and perform the event building. The dataflow
starts at the detector Front End Electronics (FEE) where the
hardware and software interface to the rest of the DAQ system
has been standardized via the Detector Data Link (DDL). DDL
consists of a bi-directional optical link between the Source
Interface Unit (SIU) and the Destination Interface Unit (DIU).
The SIU is connected to the FEE while the DIU is interfaced
to the D-RORC. D-RORC (DAQ Read-Out Receiver Card) is
a PCI module hosted in commodity PCs called LDCs (Local
Data Concentrators). The role of D-RORC is to inject raw
data coming from DDL in the LDC memory where software is
responsible for sub-event building of event fragments coming
from all the DDLs connected to the same LDC. The D-RORC
can also send configuration commands or data to the FEEs
through the DDL. The LDCs dispatch the sub-events to a farm
of PCs called GDCs (Global Data Collectors) that perform
the final event building. The communication between LDCs
and GDCs is achieved through the event building network via
TCP/IP, capable to reach an aggregate bandwidth in the order
of 	�� ����.

DATE (Data Acquisition and Test Environment) [5], [6] is
a software framework that has been developed to coherently
drive the operation of ALICE DAQ. DATE is composed of
packages that perform the different functionalities needed
by the DAQ system. These include low level functionali-
ties such as memory handling, process synchronization and
interprocess communication and higher level functionalities
like DDL readout, event building, data recording, runcontrol,
information logging, error handling. DATE utilizes the DIM
(Distributed Information Management) [14] system for inter-
process communication between different nodes, the SMI++
(State Management Interface) [15] system for process con-
trol, MySQL database management system [17] for all the
configuration databases and Tcl/Tk [18] libraries for GUI
implementation. DATE also relies on standard Unix facilities
like pipes and TCP/IP. The operating system of choice for the
DAQ enviroment is Scientific Linux CERN 4 [19].

C. High Level Trigger

Related to the on-line environment is the High Level Trigger
(HLT) of ALICE, a farm of several hundreds of PCs aimed
to perform optimized reconstruction algorithms at data-taking

Fig. 3. MOOD plugable design

time in order to take trigger decisions. Such a facility is also
known in other experiments as Level 3 Trigger or Event Filter
Farm.

D. Data Quality Monitoring

Data Quality Monitoring (DQM) is an important aspect of
every High Energy Physics Experiment. Especially in the era
of LHC where the detectors are extremely complicated devices
and advanced on-line algorithms take real-time decisions that
reduce the data volume up to 
 orders of magnitude, it is
evident that a feedback on the quality of the data that are
actually recorded for offline analysis is of extreme usefulness.

DATE provides a low-level monitoring package which
forms the basis of any high-level monitoring framework for
ALICE. It exposes a uniform API for accessing on-line raw
data on LDC and GDC as well as data written in files. It
gives the possibility of selecting the event sampling strategy
for on-line streams in order to balance the needed computing
resources.

II. INTERACTIVE DATA QUALITY MONITORING: MOOD

MOOD (Monitor Of Online Data) [10], [11] is the project
aimed to serve the interactive DQM needs of ALICE. It is
written in C++ and makes heavy use of the ROOT framework
[7]–[9]. ROOT is used to provide the GUI and the analysis
tools such as histograms and graphs. The DATE monitoring
library provides the needed interface to the DAQ. MOOD
has plugable structure (Fig. 3). The executable is essentially
a ROOT GUI application in which classes containing the
detector specific functionalities are loaded at runtime. These
functionalities include the desired visual layout and the detec-
tor specific analysis on the raw data. For a detailed description
of the application capabilities in its initial form for the period
2002–2006 cf. [10]

Four years after the initial release and after several detectors
had implemented MOOD modules for their laboratory tests
it was decided, in view of the upcoming automatic and
distributed DQM framework, to restructure MOOD in order
to address the following needs:



� Experience has shown that many detector modules had
common functionality repeated in the code which could
be factorized in a backend that provided a simple and
user-friendly API. This would minimize the impact of
future changes in ROOT/DATE API and ease the main-
tenance of modules.

� Reviewing the detector module implementations it was
possible to find common usage patterns and define a strict
sequence of operations generic enough to allow all the
usage cases already present. This would provide a partial
preview of the distributed DQM framework.

The restructuring of the application was facilitated by the
fact that it has a plugable structure. Keeping backwards
compatibility for the existing detector modules was a key
requirement. For this reason it was decided that only cosmetic
changes would be made in the central GUI part and that a
completely redesigned backend would be developed that was
essentially only visible by newly implemented modules. Some
additional design decisions have been:

� The interface to the DATE monitoring library should be
isolated from the main application as a separate library.

� The framework should provide seamless access to Ali-
Root, the ALICE offline framework [12].

� Since several modules required custom decoding func-
tionality not related to ROOT/AliRoot it was decided that
this code should be isolated in a separate library, still in
the same source distribution, that could in the future be
provided as a completely separate package to be used for
example by the upcoming DQM framework.

� Although interactive, the application should be able to
provide a fast and efficient method for the analysis of
large number of events in real-time, effectively simulating
a batch analysis process in this respect.

The above decisions were implemented as follows:
The DATE++ library was created as an integral part of

the MOOD distribution, encapsulating the DATE monitoring
library API to a C++ class library and providing two additional
functionalities:

� DATE raw event parsing: TDATEventParser class either
parses the event and creates an index of the contained
subevents/event fragments or retrieves the requested event
fragment on demand.

� Efficient hexadecimal dump of the payload: TDATE-
EventDumper class provides very fast dumping of the
payload in a variety of human readable forms. It is
characteristic that -mainly due to the nature of console
I/O-, dumping an event as a series of hexadecimal values
displayed on a ROOT GUI window is faster than the
reference implementation of DATE, eventDump console
application.

Access to AliRoot is simply provided by changes in the
Makefile of the application. However, a strong requirement
was that MOOD should also build without AliRoot present.
The solution to this problem was to enclose the AliRoot
depending code into preprocessor conditional compilation

statements. This practice must also be followed coherently by
detector modules to ensure proper building of MOOD.

For the custom decoders a separate source tree was created.
Building it produces a separate shared library. The only
requirement for code to reside in this library is that it is
pure C++ code without any external dependencies, including
ROOT and AliRoot. Another less strong requirement is that
decoders are event fragment level based, i.e. they can decode
(and possibly map) a single DDL event fragment. As an
initial effort a generic RCU and a generic DRM decoder
have been implemented. RCU (Readout Control Unit) is the
FEE readout card used for the readout of � ALICE detectors
(TPC, FMD, PHOS, EmCal). DRM (DAQ Readout Module)
is the FEE readout card utilized by TOF and T0. These
decoders require an external mapping in the form of a file
in order to associate the electronic channels with the payload
words. The clear separation of the mapping from the main
decoder facilitates the frequent changes of mapping that occur
in test and commissioning conditions where usually only
specific parts of the detector are tested. These decoders were
subsequently used in combination with MOOD monitoring
modules for TPC and T0. It is our goal that this very efficient
Online Decoding Library for the ALICE experiment will serve
as a positive contribution to the offline raw data related code.

To accomplish almost real-time operation it was decided to
effectively separate the Physics analysis from the update of the
screen. This is realized through a heuristic definition of the
algorithm that drives the application functionality, described
hereafter.

The above changes were complementary to the needed
major redesign of the framework backend mentioned previ-
ously. We decided to implement the backend using the Object
Oriented version of the “Template Method” behavioral design
pattern [13]. This pattern is also referred to as the Hollywood
Principle: “Don’t call us, we will call you” and relies on
the simple observation that if there exist a strict sequence of
operations for an algorithm, this sequence can be implemented
as a series of calls on member functions of an Abstract Base
Class (ABC). Then, any user class derived from this ABC
can redefine the pure virtual functions of the base class and
essentially execute custom code at the time dictated by the
predefined call sequence.

The described changes can be summarized in the simplified
static class UML diagram of Fig. 4

TMMainFrame class serves as the “plugger” for the mod-
ules and provides the generic GUI functionalities (menu bar,
status bar). TMBaseModule is the Abstract Base Class men-
tioned previously. The 
 pure virtual functions that essentially
drive the monitoring process are:

1) InitMonitors: This is mainly used in case user code
needs to acquire configuration/values settings from the
GUI and store them in C++ variables so they are
accessible by the algorithm at runtime. For example, if
a user enters a value in a textbox this is the function
where this value should be copied in a variable.

2) ResetMonitors: This function is called whenever there



Fig. 4. MOOD static class UML diagram

is a need to reset the histograms, for example when the
“Reset” button is pressed.

3) UpdateMonitors: This function is called to update the
screen. User code selects the appropriate pad where a
histogram should be drawn and issues a screen drawing
command.

4) PreMonitor: The code in this function is executed after
the update of the screen. Update of the screen can
happen either after a single event monitoring or after
a specified period of monitored events. It follows that in
the second case analysis is done on all the events in the
background.

5) PostMonitor: The code in this function is executed
before the update of the screen.

6) MonitorEvent: This is the function where actual analysis
takes place. The event fragments are accessible by the
MOOD API and user code can subsequently decode
the payload, perform analysis and store the results,
usually by filling appropriate histograms. The MOOD
API provides all the information for the event (event
type, trigger masks) that are available by DATE. These
information can be used to differentiate the behavior of
MonitorEvent according to the event type.

7) In practice, although not enforced by the framework, it is
helpful for each module to contain two additional func-
tions for the histogram booking and the GUI creation.
The usual name is ConstructMonitors and ConstructGUI
respectively.

MOOD supports essentially two modes of operation (see also
Fig. 5 for the buttons mentioned):

� By pressing “Get Event” button the following call se-
quence is implemented: InitMonitors, PreMonitor, Mon-
itorEvent, PostMonitor, UpdateMonitors

� By filling in the appropriate textbox the values for the
total number of events � to be monitored as well as
the update period � of the screen and pressing the
“Start Event Loop” button the following call sequence
is implemented: InitMonitors, ���� (PreMonitor, ��
MonitorEvent, PostMonitor, UpdateMonitors)

Fig. 5. Example of MOOD main screen view

MOOD now has a solid design. It has been and it is still
used in several lab setups and test-beams with only minor non-
design issues that are fixed as soon as possible. We expect
that MOOD can and will have an important role during the
commissioning phase and the first months of LHC running.
Support for the project will continue as long as there is user
demand for it.

III. AUTOMATIC DATA QUALITY MONITORING: AMORE

The complexity of LHC experiments like ALICE imposes
some fundamental requirements on the design of a modern
Automatic DQM framework. Gaining from the experience of
MOOD, some additional requirements were set:

� MOOD is a single process application capable of access-
ing a single monitoring source at a time. While one can
argue that accessing a global GDC event could grant the
ability to correlate data between detectors, this would
create a network overhead for all monitoring programs
which access only a small part of the data and it is
doubtful whether the processing power of a single core
would suffice for such advanced functionalities as fast
reconstruction or correlation between different detectors.
Automatic DQM requires a many-to-many client-server
paradigm to serve the diverse monitoring needs.

� There is strong dependence on detector code being part
of the MOOD source distribution. This requires col-
laborative development scheme through -for example-
CVS (Concurrent Versioning System) [16] which is not
convenient for several reasons. Instead it was decided
that a scheme is devised where the offline CVS, already
holding detector specific code, is used.

� The Automatic DQM will perform data analysis and issue
alarms in case of problems. This functionality requires
batch processes that are closely related and controlled by
the DAQ or Experiment Control System facilities and not
an interactive application.

The new framework is named AMORE (Automatic MOn-
itoRing Environment). The major design decisions taken to
address the previous issues are:

� AMORE shall be a distributed application following the
Observer design pattern, also known as publish-subscribe



paradigm, in which there exist a large number of informa-
tion producers as well as a large number of information
consumers and a many-to-many connection that is easily
scalable can be established. This last requirement cannot
be fullfilled with a simple server-client paradigm. The
information producers have access to raw data from
the DAQ network as well as published data of other
producers. The information consumers can subscribe to
producers, post-process and visualize the data.

� AMORE shall have no source dependence on detector
code. This is essentially accomplished by heavy usage
of C++ reflection. In computer science, reflection is the
process by which a computer program of the appropriate
type can be modified in the process of being executed,
in a manner that depends on abstract features of its
code and its runtime behavior. Figuratively speaking, it
is then said that the program has the ability to“observe”
and possibly to modify its own structure and behavior.
The programming paradigm driven by reflection is called
reflective programming. Typically, reflection refers to
runtime or dynamic reflection, though some programming
languages support compile time or static reflection. It is
most common in high-level virtual machine programming
languages like Smalltalk, and less common in lower-level
programming languages like C. In C++/ROOT it can
be accomplished by building source code dictionaries at
compile-time.

� AMORE shall use the same interprocess communication
and control mechanisms as the ALICE DAQ, namely
DIM and SMI++.

� AMORE publishers and subscribers shall use intermedi-
ate pools for data exchange. The original implementation
shall use MySQL servers for this purpose, although
provision shall be made that the framework is not bound
to a specific implementation.

� All configuration shall be handled via MySQL databases.

A development timeline for the distributed DQM application
that would serve the needs of ALICE for the first years of
running was established.

� May 2006–August 2006: MOOD reimplementation as a
preview and technology testbed of the automatic DQM
framework. No further architectural changes afterwards,
only required bugfixes.

� September 2006–January 2007: Collection of Physics re-
quirements for monitoring from detector groups, namely
preliminary lists of histograms along with a short ratio-
nale for the Physics scope.

� January 2007–September 2007: Implementation of the
new framework and test commissioning with selected
detector groups, collection of additional framework re-
quirements.

� October 2007–April 2008: Full detector integration, ad-
ditional requirements implementation.

In figure 6 the UML collaboration diagram of the AMORE
processes is presented. On the topmost level dqmAgents run

Fig. 6. AMORE UML Collaboration diagram

as batch processes. They have access to the level 	 trigger
raw data from LDCs and GDCs. Their task is to decode
and transform the raw data into physical quantities stored in
the form of MonitorObjects. For the purpose of this analysis
it suffices to consider MonitorObjects as histograms with
additional housekeeping information that allow proper and
coherent handling by the framework. dqmAgents have the
ability to dispatch an instance of their MonitorObject content
on a dqmPool. Each dqmAgent can connect to one and only
one dqmPool for this purpose. In essence dqmAgents publish
their results on dqmPools. On the opposite side, dqmClient
processes subscribe to MonitorObjects on any dqmAgent. This
allows dqmClients to receive regular updates on the content
of the subscribed MonitorObjects. As it can be seen from the
diagram, there is no direct MonitorObject transfer between
dqmAgents and dqmClients. All such transactions occur via
the dqmPools which are implemented as MySQL servers.
The framework also provides the possibility of non-first level
dqmAgents that only have access to MonitorObjects published
by other dqmAgents. They can perform post-processing and
publish their results.

Communication between any processes for the purpose of
command or information exchange is done through DIM. Any
batch process in the framework acts as a DIM server which
can receive commands from any DIM client implementation.
In practice, the concept of a master client per subsystem will
be introduced. Only the master client will be granted privileges
to send commands to the dqmAgents of the subsystem. The
rest of the clients for this subsystem will be simple observers,
only able to subscribe to desired MonitorObjects.

dqmAgents are implemented as finite state machines. This
will facilitate the future integration with DAQ/ECS via the
SMI++ framework. dqmClients are in reality modularized.
There exist the actual dqmClient backend which is responsible
for the subscription handling and contains an abstract interface
for any client application and a higher level layer which
is responsible for the visualization and utilizes the abstract
interface of the dqmClient.



IV. CONCLUSION

We presented the architecture of the ALICE Interactive and
Automatic DQM framework which has taken into account
the existing experience from other LHC experiments. The
architecture is generic enough but still encapsulates all the
required elements needed for ALICE. The biggest advantages
are the scalability and modularity of the framework. At the
moment of this writeup implementation of the framework is
ongoing. A fully functional prototype will be in place at LHC
startup.
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