
Journal of Grid Computing (2004) 2: 247–260 © Springer 2005

Autonomic Management of Large Clusters and Their Integration into the
Grid ∗

Thomas Röblitz1, Florian Schintke1, Alexander Reinefeld1, Olof Bärring2, Maite
Barroso Lopez2, German Cancio2, Sylvain Chapeland2, Karim Chouikh2, Lionel Cons2,
Piotr Poznański2, Philippe Defert2, Jan Iven2, Thorsten Kleinwort2, Bernd Panzer-Steindel2,
Jaroslaw Polok2, Catherine Rafflin2, Alan Silverman2, Tim Smith2, Jan Van Eldik2,
David Front3, Massimo Biasotto4, Cristina Aiftimiei4, Enrico Ferro4, Gaetano Maron4,
Andrea Chierici5, Luca Dell’agnello5, Marco Serra6, Michele Michelotto7, Lord Hess8,
Volker Lindenstruth8, Frank Pister8, Timm Morten Steinbeck8, David Groep9, Martijn
Steenbakkers9, Oscar Koeroo9, Wim Som de Cerff9, Gerben Venekamp9, Paul Anderson10,
Tim Colles10, Alexander Holt10, Alastair Scobie10, Michael George11, Andrew Washbrook11

and Rafael A. Garcı́a Leiva12

1ZIB, Takustraße 7, D-14195 Berlin Dahlem, Germany
2CERN, CH-1211 Geneva-23, Switzerland
3Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
4INFN, Viale dell’Università 2, I-35020 Legnaro (Padova), Italy
5INFN, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
6INFN, P. le Aldo Moro 2, I-00185 Roma, Italy
7INFN, Via Marzolo 8, I-35131 Padova, Italy
8University of Heidelberg, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
9NIKHEF, PO Box 41882, 1009 DB Amsterdam, The Netherlands
10University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
11University of Liverpool, Oxford Street, Liverpool L69 7ZE, UK
12Department of Theoretical Physics, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Key words: autonomic computing, cluster computing, grid computing, system management

Abstract

We present a framework for the co-ordinated, autonomic management of multiple clusters in a compute center
and their integration into a Grid environment. Site autonomy and the automation of administrative tasks are prime
aspects in this framework. The system behavior is continuously monitored in a steering cycle and appropriate
actions are taken to resolve any problems.

All presented components have been implemented in the course of the EU project DataGrid: The Lemon
monitoring components, the FT fault-tolerance mechanism, the quattor system for software installation and con-
figuration, the RMS job and resource management system, and the Gridification scheme that integrates clusters
into the Grid.

∗ This work from the EU DataGrid project was funded by the European Commission grant IST-2000-25182.



248

1. Introduction

Large-scale projects like the forthcoming LHC ex-
periments at CERN require computing resources in a
scale that was never reached before [4]. In respect to
their excessive demands on the computing infrastruc-
ture these projects are often equipped with a relatively
low budget for computing, storage, and networking.
Commodity clusters made of common-off-the-shelf
technology therefore provide a welcome alternative
to the more costly high-performance computers. The
vastly grown requirements on the availability, how-
ever, clearly identify the neuralgic shortcomings in
the current state-of-the-art of the cluster technology,
namely their poor fault tolerance and high mainte-
nance overhead [20]. Moreover, clusters are often
incrementally installed or upgraded over time, typi-
cally resulting in heterogeneous hardware and soft-
ware and thereby making it difficult to manage them
in a consistent way.

At a conceptually higher level, clusters are often
used as computing nodes in global Grid environments.
Here, the mentioned problems become even more crit-
ical, because single clusters should (ideally) function
autonomously without human intervention. The au-
tomated operation is not only necessary for reducing
human administration effort, but also to limit possible
sources of errors and to reduce service downtimes.

First bold visions for autonomic computing sys-
tems were presented, but their implementation are –
of course – still in their infancy. Among the four
self-management issues presented by Kephart and
Chess [14], our work addresses self-configuration and
self-healing. We aim at freeing virtual organizations
from the burden of manually maintaining compute
fabrics, thereby allowing them to concentrate on the
higher-level organizational tasks in the Grid.

Our system facilitates self-configuration by de-
scribing the configuration of hardware and software
components and deploying this information, e.g. for
install and configure services. Self-healing features are
achieved by monitoring the actual state of hardware
and software components, correlating the sampled
data with the goal state and automatically devising
actions for repairing or updating the affected compo-
nents. Additionally, our system manages the access
to cluster resources for Grid jobs and it coordinates
all tasks, that is, it provides a coherent inter- and
intra-cluster job management.

The remainder of this paper is organized as fol-
lows. In the next section we present an overview of

the architecture of the DataGrid fabric management
system. Thereafter we present the building blocks in
more detail (Sections 6, 7) and conclude the paper with
a summary of our results.

2. Goals and Architectural Overview of Our
Framework

In this section we discuss the objectives of our frame-
work and present an overview of the components. The
architecture reflects two key issues: (1) autonomous
maintenance of the configuration of Grid computing
centers and (2) job management.

2.1. Autonomous Maintenance

The main aim of our framework is to lower the
administrative burden of managing multiple heteroge-
neous hardware and software components in a Grid
computing site (also called fabric). Large comput-
ing centers may profit, because many repetitive tasks
are handled automatically and more consistently. Al-
though, our work was aiming at large installations,
we found out that, research groups with smaller sized
resources and usually less expertise in managing hard-
ware and software are enabled to share their resources,
because of the lowered administrative costs. The self-
management of all hardware and software components
includes (A) automatically adding new machines to a
fabric – i.e. recognizing those machines, installing ap-
propriate software packages on them and configuring
the services hosted by a machine – and (B) ensuring
the functional integrity of hardware and software com-
ponents – including to switch off faulty services or
even removing hosts from the active set of machines.

Hardware-based changes (A). As hardware is in-
crementally added to or upgraded in a fabric, the
self-management must take notice of this and perform
the necessary actions (OBJECTIVE AM.1). Assuming
a new machine has been added or an existing one has
been upgraded, the following actions are performed:
(1) installing/running the core operating system and
the self-management components, (2) deciding which
services the machine should host, (3) updating the ma-
chine’s configuration accordingly (installing software
packages and configuring the services running on the
machine). Both steps (1) and (2) can be initiated from
the machine itself via some bootstrapping mechanism
or externally from another machine that observes the



249

network to recognize new machines. The architecture
of our framework supports both methods equally.

Functional integrity (B). A Grid computing center is
build of many services such as a file server, a DNS
server, a Grid access node, a batch master, a batch
worker, etc. The relationship of services to machines
(hardware) is typically N to M:

− some services exist only once (e.g. DNS server),
− multiple machines host a single specific service

only (e.g. file server and batch worker) and
− some machines host multiple services (e.g. Grid

access and batch master).

The self-management must ensure that the services are
running and function correctly (OBJECTIVE AM.2),
e.g. by performing basic tests. Also, the hardware
must be monitored, e.g. to simplify the identification
of faults.

2.2. Job Management

Beside the self-management aspect our framework
addresses issues related to the management of user
jobs. User jobs may originate from different sources:
(1) local user’s community, (2) Grid community and
(3) self-management part.

First, because certain self-management actions
could corrupt the runtime environment of jobs, the job
management must provide capabilities to coordinate

user jobs with maintenance jobs (OBJECTIVE JM.1).
Different Grid computing centers may deploy differ-
ent job management systems each providing a spe-
cific set of scheduling features apart from common
functionality. Hence, our framework must provide
methods to enhance scheduling features. Otherwise,
Grid jobs may not fully exploit the potential of a site
(OBJECTIVE JM.2).

Second, jobs from the Grid community must pass
an authorization check before they can be submit-
ted to a local queueing system (OBJECTIVE JM.3).
Authorization may depend on multiple factors, e.g.
user’s affiliation, resource requirements, current state
of the resources, and may change dynamically. If a
job request has passed the authorization step it must
be provided with the necessary credentials for their
execution (OBJECTIVE JM.4).

2.3. Archtectural Overview

In this section we present an overview of the compo-
nents in our framework. The following sections will
discuss these components in more detail and describe
how each contributes to reach the objectives listed in
the previous section.

Figure 1 depicts the interrelationships between the
components, that we developed and implemented in
the European DataGrid project [7], and shows how
they work together to achieve an automated computing
center management. A ‘fabric’ comprises one to sev-
eral separate clusters with (possibly) different cluster

Figure 1. Management cycle for the automated maintenance of clusters in a compute center and their integration into a production Grid.



250

management systems (batch systems) and a couple of
servers responsible for services, e.g. self-management
components, file servers, DNS server, Grid access
node, etc. (not shown in the figure).

Three kinds of jobs may enter the fabric:

− grid jobs (from the grid level above),
− local user jobs (injected from the left), and
− maintenance jobs (injected by the system itself).

Status information on the machines’ target config-
uration, the goal state, is stored in a configuration
database. The actual state is obtained by monitoring
tools. Both states are compared in the Fault Detection
and Recovery System, which checks for mismatches
and initiates the necessary maintenance actions to fix
them. Note that these actions are passed via the Instal-
lation System to the Job Management which schedules
the maintenance jobs just like any other ordinary user
job – but with specific requirements, of course. Even
if the actions would not be executed on a worker node,
their execution might require careful planning because
(running) jobs may depend on affected services, e.g.
file server hosted by a non-worker machine. In addi-
tion, local user jobs may be submitted for execution
on specified clusters, or grid jobs may be injected from
remote via the Gridification component.

The components Configuration Management, Mon-
itoring, Fault Detection and Recovery System and
Installation together provide a framework aiming at
the objectives AM.1/2. The Job Management and
the Gridification services provide a solution to the
job-related objectives JM.1–4.

In the following sections, we discuss the compo-
nents focussing on self-management, i.e. configura-
tion and installation management (Section 3), mon-
itoring (Section 4) and fault detection and recovery
system (Section 5). Then, the job management sys-
tem is described in detail (Section 6). Thereafter, we
present the Grid access services (Section 7).

3. Configuration and Installation

Large fabrics consist of diverse hardware and soft-
ware. Mainly, two reasons contribute to this observa-
tion. First, different machines serve different purposes,
e.g. batch nodes, batch servers, file servers, network
management machines, etc. Second, even those ma-
chines which are used for the same purpose may be
installed or upgraded in an incremental procedure.
Moreover, the list of software to be installed on all

those machines differs significantly. Hence, the ad-
ministration complexity is enormous. An automated
configuration and installation management system is
required to lower the administration overhead and
facilitate a consistent configuration of all services.

Here, we describe a system called quattor that ad-
dresses these issues. Quattor manages configuration
information, installs software packages and config-
ures the services provided by a fabric. Thus, quattor
addresses all objectives (by describing the configu-
ration) and particularly the installation of software
packages and the configuration of the whole system
(OBJECTIVE AM.1).

Cfengine [6] is a set of tools building an expert
system for the configuration and management of com-
puter networks. Unlike quattor, Cfengine uses no
central store for configuration information. Configura-
tion elements are implicitly contained in policy rules
organized by classes. Cfengine does not address soft-
ware distribution. LCFGng [3] stores configuration
information in a central database. Its configuration
description language provides mechanisms for inheri-
tance and mutation. The information is made available
to specific machines by creating a machine profile and
transmitting it to its target (i.e. the machine). Even
though quattor and LCFGng share many architectural
ideas, quattor uses a improved configuration language
called “pan”, which provides offline validation ca-
pabilities. Also, quattor interfaces different software
package management tools.

3.1. Architecture of the Configuration and
Installation System

The key design issues for the architecture are:

− distributed approach: operations are handled lo-
cally on the machines whenever possible,

− efficiency: machine profiles are stored locally to
avoid a central bottleneck, and

− adaptability: interfaces existing tools.

Quattor consists of two building blocks, a configu-
ration information management system and a software
installation and service configuration system. The for-
mer is shown in Figure 2. It consists of a central
database that stores configuration information. The
information is inserted or updated using the High
Level Description language Pan. Machine profiles are
generated by compiling the High Level Description
information into Low Level Description documents.

Validation of the configuration information is one
of the most important features of the Pan language.



251

It is described by the validation code that is attached
to a configuration tree either through paths (attached
to a given path) or through types (added to a type
definition). One configuration element can have more
than one validation code attached. During validation
phase, the code gets executed and evaluated. If it
does not return the true value, a validation error is
returned. The validation code can use the variable self,
which is set to the value of the element that is being
validated. Validation code cannot change any config-
uration information. Validation is the last phase of
the processing of statements in Pan. It is performed
just before creation of the Low Level Description
documents.

Figure 3 shows an example for a configuration with
validation described in Pan. First, the type nfs_mount
is declared (lines 1–6). It contains attributes for the
IP number of the server (line 2), the directory on the
server (line 3), the mount point at the client (line 4) and
a list of options (line 5). The values for the first three
attributes must adhere to some format, which is given

Figure 2. Components for managing configuration information.

by the validation expressions (starting with with). For
example, the IP number must contain four numbers
separated by a dot. Both the directory on the server
and the mount point are strings that start with a slash.
Next, the specific mount point must be created in the
configuration section for nodeA (line 10). Then, values
for the attributes are set (lines 11–14).

The machine profiles are stored in the Configu-
ration Database (CDB). If a machine’s profile was
changed the Configuration Cache Manager (CCM) on
the respecting host is notified. The CCM of a ma-
chine polls for its profile and stores it in a local cache.
The Node Configuration Manager (NCM) provides a
framework for adapting the actual configuration of a
node to its desired configuration, as it is described
in the node’s profile. Plug-in software modules called
components are responsible for the configuration of
local services, e.g. network, sendmail, NFS, sched-
uler, etc. These components or any other service on a
machine may access configuration information via the
Node View Access API (NVA).

A specific service using the configuration informa-
tion management system is the software installation
system. Figure 4 shows the main components of such
a system. Software packages are stored in a reposi-
tory on a server (multiple servers may coexist). The
list of software to be installed on a machine is stored
in a central configuration database and forwarded to
this machine via its configuration cache manager. On
each machine the Software Package Manager Agent
compares the target software list with the currently in-
stalled packages and devises a list of packages to be

1 define type nfs_mount = {
2 "server_ip" : string with self =~ m/^\d+\.\d+\.\d+\.\d+$/
3 "server_dir" : string with self =~ m/^\//
4 "mountpoint" : string with self =~ m/^\//
5 "options" : list
6 }
7
8 template nodeA;
9 include nfs_mount;
10 "/services/nfs/home" = create ("nfs_mount");
11 "/services/nfs/home/server_ip" = "10.0.0.3"
12 "/services/nfs/home/server_dir" = "/home"
13 "/services/nfs/home/mountpoint" = "/global/home"
14 "/services/nfs/home/options" = list("rw","noauto")

Figure 3. Declaration and configuration of a NFS mount point using Pan.



252

Figure 4. Components for managing software installation.

installed or removed, according to configuration poli-
cies e.g. for respecting existing local installation. The
tool rpmt executes this list. For efficiency packages
may be pre-staged to a machine in a cache.

4. Monitoring

Monitoring data about many different components
must be gathered and stored to facilitate the self-
healing of fabric services, i.e. aiming at the objectives
AM.1 and AM.2. First, data must be collected. Then
it must be stored and made available in an efficient
manner for other components, such as the fault de-
tection system (see Section 5). We developed Lemon
a framework for monitoring components and storing
the collected data both in a local and in a central
repository.

SNMP (Simple Network Management Proto-
col) [24] is a widely used standard for facilitating
device management over a network. Agents notify
managers about events, while managers poll agents
for data updates. A monitoring system building on
SNMP may contain components from different ven-
dors. However, SNMP was not used, because it is quite
complex to implement, the communication between
the agents and the manager is not efficient [2], and
its data format is bounded to transfer commands. In
contrast, Lemon uses a proprietary very simple data
exchange format.

Ganglia [22] and Condor Hawkeye [10] use XML
as data format. Lemon uses XML for querying and
change notification.

In Ganglia, all nodes push all data to all cluster
mates, and cluster representatives are polled by the
manager. In contrast, Lemon stores data locally and
forwards it directly to the manager, which is more
efficient in large clusters.

Figure 5. The monitoring system consisting of sensors, a sensor
controller, a local and a central monitoring data repository.

4.1. Architecture of the Monitoring System

The monitoring system consists of four components as
shown in Figure 5.

On each machine different sensors periodically
collect data. All sensors are controlled by the Monitor-
ing Sensor Agent (MSA) which receives data samples
and stores them in a Local Monitoring Data Reposi-
tory (i.e. a cache). The MSAs also forward the data
samples to a central repository.

4.1.1. Data Sampling
A configurable Monitoring Sensor Agent runs on all
monitored hosts. The MSA is responsible for calling
the plug-in sensors to sample the configured metrics.
The system provides sensors for common perfor-
mance and exception monitoring. Other sensors can
be plugged in easily. The sampling frequency and
the minimal change percentage required for a sample
to be sent (smoothing) can be configured per metric.
The interface is designed such that sensors are not re-
quired to answer to MSA sampling requests and may
chose to trigger their own unsolicited samplings to
MSA. The sensor communicates with the MSA over
a normal UNIX socket using a proprietary simple text
protocol.

The local monitoring data repository (cache) is
available for local consumers of monitoring data. This
is useful for allowing local fault tolerance correlation
engines and may be used to resend data to the cen-
tral repository in case of sending data has failed. The
cache is implemented as a flat text file database, with
one file per metric per day. Each line contains a single
measurement in the format timestamp value.

4.1.2. Data Access
Data may be accessed through the repository API. The
API does not distinguish different data types (must
be handled by the client of the API). The API pro-
vides methods to insert samples into a repository, to



253

query samples and to subscribe for change notifica-
tion. The result of queries may contain one to many
samples. Queries may be restricted to the latest mea-
surement or may refer to measurements taken over a
given period.

Bindings for various languages can be generated
from the WSDL description of the API.

4.1.3. Data Transport
The transport of monitoring data from the monitored
hosts to the central repository is also pluggable. Im-
plementations for both UDP and TCP (prototypic) ex-
ist. The TCP based implementation uses permanently
open sockets and includes a proxy like mechanism to
fan-out the number of open connections on the cen-
tral repository to a subset of the monitored hosts. On
the proxy hosts the transport component of the MSA
not only sends the monitoring data of the host it-
self, but it also receives and forwards data from other
MSAs. The proxy environment must be configured
statically.

4.1.4. Data Storing
The central measurement repository server uses the
repository API to plug-in any database system as back-
end. So far, backends for flat files (same as for the
local repository), Oracle (called OraMon), and ODBC
(prototypic) have been developed.

5. Fault Detection and Recovery

The aim of the Fault Detection and Recovery sys-
tem (FDR) is to provide automatic error detection
and correction, i.e. self-healing of a fabric (objectives
AM.1/2). In a large cluster or fabric one faulty node
can cause serious problems for the whole grid. For
example, a broken DNS server or a broken gateway
may disconnect a whole fabric from the grid. Another
problem may be that a normal computing node may
cause a long delay in the analysis job or may even
cause the total failure of a job.

For the described scenario, the Fault Detection and
Recovery (FDR) system must cope with automatically
running tasks that are not commonly found in todays
cluster management systems:

− automatic error prevention, e.g. to prevent hard-
ware damage caused by overheating,

− automatic error correction, e.g. by restarting
crashed services,

− schedule repair tasks that would interfere with run-
ning jobs, e.g. freeing disk space on file servers.

The FDR system differs from existing tools like
VACM [26], Patrol [18], and Performance Co-
Pilot [19]. VACM is a centralized cluster administra-
tion system which is not able to react on alerts in more
than one way. Patrol is very limited in its function-
ality, because it provides only a small set of services
like CPU load monitoring, disk space controlling or
watching the instances of running daemons. Perfor-
mance Co-Pilot is useful for detecting performance
problems in clusters, but does not support automatic
recovery actions. Our fault tolerance software offers a
non-centralized fault recovery system which is freely
configurable and can combine results from more than
one sensor to detect more complex faults.

5.1. Architecture of the Fault-Tolerance System

The FDR system is rule based. Each rule compares
data retrieved from the monitoring system against con-
figured limits. If the condition of a rule holds, the
specified action is performed. By following a hierar-
chical approach, the FDR system supports handling
faults both locally on each machine and remotely from
specific machines dedicated to maintain the correct
functioning of the diverse services in a Grid computing
center. In Section 5.1.3 we show examples for both
local and remote rules.

Figure 6 shows the components of the FDR system.
These components are the Fault Tolerance Correlation
Engine (see Section 5.1.1), the Fault Tolerance Actua-
tors (see Section 5.1.2) and the Fault Tolerance Rules
(see Section 5.1.3).

Because of the generic architecture of the fault tol-
erance components, any (soft) fault can be handled. In
case of hardware faults, the system may not solve the
problem but keep the fabric running by isolating faulty
machines.

Figure 6. Components of the fault-tolerance system.



254

5.1.1. Fault Tolerance Correlation Engine
The Fault Tolerance Correlation Engine (FTCE) is the
active correlation engine. The FTCE runs as a daemon
process on all hosts and is implemented to be robust to
most system component failures. The FTCE processes
observe one or several metrics stored in the MR to
determine if something has gone wrong or is on its
way to go wrong on the system. If so, it determines
what recovery actions are needed, and launches the
corresponding actions. Its output metric values contain
a boolean flag that reflects if any fault tolerance actu-
ators were launched, and if so, the identifiers of the
actuators and their return status. The FTCE processing
for a given metric is triggered either through a peri-
odic sampling request from the MSA (see Section 4.1)
or through the metric subscription/notification mecha-
nism provided by the monitoring repository.

5.1.2. Fault Tolerance Actuators
A Fault Tolerance Actuator (FTA) is an implemen-
tation of the FaultToleranceActuator interface that
executes automatic recovery actions. The FTA is typ-
ically driven by rules stored in the Configuration
Management subsystem (see Section 3). A given FTA
implementation can thus be used for several similar
recovery actions, e.g. a single “daemon restart”. An-
other example for an FTA, is a service restarter, i.e.
by calling the restart method of the installed software
packages.

5.1.3. Fault Tolerance Rules
A Fault Tolerance Rule (FTR) contains all necessary
information about the controlled values on the nodes
and the actuators that should be started if a value runs
out of its defined limit. The interface for the actuator
is as simple as possible: it may be a shell or an exe-
cutable. The administrator is able to configure up to 64
levels of actuators, which may be started in sequence
if the actuator that was started before was not able to
fix the problem. FTRs are described in XML.

Generally, rules should be kept as simple as possi-
ble to prevent situations where different rules conflict
each other. During the course of our project we found
that (among others) rules concerning the observation
of daemons, processor temperature, fan speed, disk
usage, process zombies and partition table are useful
on all machines. Also, the comparison of CPU load
and/or memory usage for worker nodes can be used
to identify unusual situations, for example caused by
run-away processes from previous jobs.

<edg_ft_rule>

<event>

<level>

<actuator shell="noshell">

<actuatorname>sshd</actuatorname>

<argument number="1">start</argument>

<actuatorpath>/etc/init.d/</actuatorpath>

</actuator>

</level>

<rule>

<lookup>

<node_id>node03.bar.foo</node_id>

<metric_id>9501</metric_id>

</lookup>

<mo>!=</mo>

<value>1</value>

</rule>

</event>

</edg_ft_rule>

Figure 7. Example of a fault tolerance rule being applied locally on
a machine that serves as login (ssh) node.

<edg_ft_rule>

<event>

<level>

<actuator shell="noshell">

<actuatorname>switch_role</actuatorname>

<argument number="0">node04.bar.foo</argument>

<argument number="1">worker_node</argument>

<argument number="2">login_node</argument>

<actuatorpath>/opt/edg/sbin/</actuatorpath>

</actuator>

</level>

<rule>

<lookup>

<node_id>node03.bar.foo</node_id>

<metric_id>9506</metric_id>

</lookup>

<mo>></mo>

<value>4</value>

</rule>

</event>

</edg_ft_rule>

Figure 8. Example of a fault tolerance rule being applied remotely
to change the role of a machine from worker node to login node.

Figure 7 shows an example of a rule applied lo-
cally on a login machine. The example rule compares
(op !=) a specific metric (id 9501) sampled at host



255

node03.bar.foo against the value 1. If the condi-
tion holds, the command /etc/init.d/sshd start
is executed, i.e. the daemon sshd is started.

Figure 8 shows an example of a rule applied re-
motely. The rule checks the load (metric 9506) on
node node03.bar.foo against the value 4. If the
condition holds (load higher than 4), the command
switch_role is executed, i.e. the configuration data-
base is updated such that node04.bar.foo will serve
as login node in the future.

6. Resource Management

For the described scenario, the resource manage-
ment system must cope with additional tasks that are
not commonly found in today’s cluster management
systems:

− the support of jobs coming from various sources
(OBJECTIVE JM.1),

− the interaction with different cluster management
systems (OBJECTIVE JM.2),

− the provision of additional services for the grid
layer (OBJECTIVE JM.2).

We developed a single component, the Abstraction
Layer (AL) [21], that facilitates the deployment of
advanced schedulers, like Maui [5] and provides a
consistent interface to different cluster management
systems.

Some cluster management systems already provide
hooks to integrate external schedulers like Maui, but
the integration is done differently for each system. Our
system, in contrast, interfaces to various cluster man-
agement systems and schedulers via adaptors, without
the need to implement separate adaptation interfaces
for each combination.

A variety of cluster configuration suites, like OS-
CAR [16], SCMS [25], NPACI Rocks [17] exists, but
none of them supports the scheduling of maintenance
actions.

6.1. Resource Management Architecture

In most cluster batch systems, the scheduler inter-
acts with a server/master to retrieve status information
from the nodes to make its scheduling decisions. We
illustrate different aspects of this interaction in the
following sections. First, we discuss how a specific
scheduler can interact with a specific server/master.
Thereafter we show how to manage several clusters
with one scheduler (within a computing center). With

Figure 9. Support for job management and maintenance actions
across several clusters.

our approach scheduling features can be added to clus-
ter management systems in a non-intrusive way. We
describe this at the hand of scheduling features that
are missing in several cluster management systems.

6.1.1. Consistent Management of Multiple Clusters
We use an abstraction layer (AL) [21] between the
scheduler and the cluster batch system’s server. The
AL filters information that is transmitted between the
two components. This reduces the customization ef-
forts in an environment with different schedulers and
multiple cluster batch systems. When the source code
of the server or the scheduler is not available, adding
an abstraction layer may be the only possible solution.
In addition, it helps hiding site-specific facilities or
features like internal load balancing across clusters,
resource brokerage, status information filtering, etc.
The abstraction layer is kept generic and provides an
proxy interface for plugging-in different adapters for
different servers/schedulers.

The abstraction layer also allows to operate sev-
eral clusters with a single scheduler as illustrated in
Figure 9. Here, job management actions are depicted
by solid arrows while maintenance tasks have dashed
lines.

Incoming jobs are submitted to the server (step 1).
The scheduler periodically asks for the current status
of nodes and jobs, and the abstraction layer gathers
this information by sending requests to the server.
When finished, it sends the (filtered) information back



256

to the scheduler (step 2). The scheduler determines a
schedule and sends the decision to the server through
the abstraction layer (step 3).

Only four operations are necessary to link sched-
uler and server by an abstraction layer: start job, cancel
job, node info, and job info. Although the set of
operations seems to be obvious, its composition was
motivated by the Wiki interface of the Maui scheduler.

The execution of maintenance actions is illustrated
by dashed arrows in Figure 9. First, the abstraction
layer receives a request to switch a node on or off (step
A). If it accepts the request, it reserves the specified
nodes for the given time interval (step B) and sets the
status of the nodes during that interval to stopped at
the servers (step C).

6.1.2. Extending the Functionality of Cluster
Management Systems

Most cluster management systems, like the Portable
Batch System (PBS) [11], LoadLeveler (LL) [12],
Sun Grid Engine (SGE) [23], Load Sharing Facil-
ity (LSF) [27], or the Computing Center Software
(CCS) [13] provide a common set of scheduling fea-
tures like fifo, backfill, etc. They mainly differ in their
support for advanced scheduling capabilities like ad-
vance reservation. While users of stand-alone clusters
may be able to cope with these feature lacks, Grid
users are forced to confine themselves to the com-
mon set of basic scheduling features. Our approach,
in contrast, allows to add those functions inside the
abstraction layer if necessary (OBJECTIVE JM.2).

Note that up to now no cluster management system
or scheduler supports the modification of node states
like on and off in the future, which is necessary to
support the planning and execution of maintenance
actions.

6.1.2.1. Maintenance Actions As outlined in Sec-
tion 1 automating the administration of large clusters
is an important issue. Administrative tasks that may af-
fect jobs running on the same node, must be taken into
account by the scheduler by planning the maintenance
task just like an ordinary job (OBJECTIVE JM.2).

A simple but effective method is to disable all
affected nodes during the task. To schedule a main-
tenance action, the admin component contacts the
resource management for a specific or flexible time
slot on a set of nodes. The scheduler decides and
schedules the node state change. If the request was
successful, the administrative task can be performed
during the agreed time slot. Our scheme of handling

maintenance actions needs the capability to request
time slots in the future for the coordinated planning
of system maintenance. Not all cluster schedulers sup-
port advance reservations. Hence we replace them by
a more powerful one, the Maui scheduler.

7. Gridification

Grid job submission and file access using GridFTP
have traditionally been protected using a simple ver-
sion of the Grid Security Infrastructure (GSI) [8].
Authorization in traditional GSI is based on a single
user access list (the so-called grid-mapfile), explic-
itly naming individuals that are allowed to access a
service. For those services that need a system-local
principal, this list also provides a mapping between
the user’s distinguished name and that of the local
principal.

The components LCAS (Local Center Authoriza-
tion Service; OBJECTIVE JM.3) and LCMAPS (Local
Credential MAPping Service; OBJECTIVE JM.4) rep-
resent two functions to access the local fabric: pure
authorization and the assignment of local credentials,
respectively. The main incentive for this split is to
enable global authorization decisions to be made with-
out the need to interact with system-local credential
services.

Besides the traditional grid-mapfile solution for
local site authorization described above, the PRIMA
system [15] was developed, which is similar to LCAS.
The PRIMA system is driven by an XACML policy
and uses the globus authorization call-out mechanism
in the Gatekeeper and GridFTP server. The develop-
ment of this call-out mechanism was triggered among
others by the development of LCAS, but it lacks the
possibility to incorporate job characteristics in the au-
thorization decision process, in contrast to LCAS and
LCMAPS.

7.1. Architecture of the Gridification Components

Figure 10 shows the architecture of the Grid Access
system and presents the interaction of the different
components. A job request consisting of the usual de-
scription (e.g. executable name, in- and output files,
wallclock limit, etc.) and a (proxy) certificate is sent
to the Gatekeeper. Then the request must be autho-
rized by the LCAS (indicated by (1) in Figure 10).
For authorization the LCAS invokes a set of plug-ins
until the request is denied or allowed to proceed (2).
Next, the Gatekeeper asks the LCMAPS to acquire lo-
cal credentials to the job and to enforce the use of these



257

Figure 10. Components for managing access to fabric resources.

credentials, e.g. by setting the user ID (uid) and group
ID (gid), etc. (3). If all actions have been passed suc-
cessfully (4), the job is forwarded to the local cluster
batch system.

7.1.1. The Local Center Authorization Service
The Local Center Authorization Service (LCAS) al-
lows authorization decisions based on user credential
information and service request characteristics. It pro-
vides a framework for pluggable authorization that is
interfaced directly to the service daemon.

The LCAS framework is enabled by loading the
LCAS service library in the service daemon (at this
time both the Gatekeeper and GridFTP have been
equipped with the appropriate hooks for commu-
nicating with LCAS). This LCAS library reads a
text-based configuration file listing the authorization
plug-ins to be invoked. Each plug-in is a stand-
alone shared object, to be loaded on LCAS startup,
with three pre-defined entry points (initialize,
confirm_authorization and terminate). During
authorization, the LCAS service will call each plug-
in in turn, in the order specified in the setup file, until
a module denies access to the request or no more mod-
ules are available. If any module denies the access,
LCAS will return an authorization failure to the calling
service (e.g. the Gatekeeper).

Since modules are stand-alone objects, they can
be updated or replaced by the system administrator
without recompilation of the service daemon itself.
Also, new modules can be written and added to
the authorization chain. Three standard modules are
supplied with the system: an “allowed users” mod-
ule (providing functionality similar to the traditional
grid-mapfile), a “ban users” module (allowing in-
stant denial of service to specific users) and a “time-
slot” module (placing wallclock time constraints on
acceptance of requests).

7.1.2. The Local Credential Mapping Service
The Local Credential Mapping Service (LCMAPS) is
a pluggable framework like LCAS. However, in order
to merge into pre-existing services that use the Grid
Security Infrastructure, LCMAPS is equipped with a
more advanced policy language (see Figure 11 for an
example) and multiple entry interface. It can be used
without recompilation or re-linking of either the Gate-
keeper and GridFTP daemons. Virtually all existing
computer systems require that a process or action is
performed using one or more credentials. On tradi-
tional POSIX systems, this is a user ID (uid) and one
or more group IDs (gids), with one specific uid and
gid having elevated privileges. Other systems use AFS
or Kerberos5 in lieu of, or next to the conventional
POSIX authentication. Therefore, it is necessary to
provide any user request that will create a process or
access data directly via the filesystem layer with (a set
of) local credentials.

Conventional GSI provides a direct one-to-one
mapping between the client’s distinguished name
(DN) and a pre-existing local credential. Moreover,
the Gatekeeper service can also acquire a Kerberos5
ticket, if so instructed by the system administrator.
There is no provision either for users that are not
known to the system beforehand, or to acquire priv-
ileges based on VO membership, as e.g. provided by
the VO Membership Service (VOMS) [1]. The former
point (unknown users) has been addressed by the pool
accounts extension to GSI [9], but this is still limited
to conventional UNIX credentials (uid and gid), and
does not support membership of multiple VOs.

LCMAPS provides a policy-driven framework for
acquiring and enforcing local credentials, based on the
complete security context, which includes the VOMS
attributes contained in the user proxy certificate, and
the job description. In addition a legacy interface is
provided by which the credential mapping is based on
only the user’s DN. For reasons of system integrity,
LCMAPS comes only as a library and cannot operate
as a stand-alone daemon. Also, since the operations
that LCMAPS might perform can be expensive (like
creating a new account on-the-fly) it is required that all
relevant authorization decisions have been completed
successfully by LCAS.

The LCMAPS system is initialized on service
startup (Gatekeeper or GridFTP daemon). It consists
of two principal components: a plug-in manager and
an evaluation manager (not shown in the figure). The
plug-in manager is in control of the plug-in modules
and is the only component that has direct access to



258

1 # module definitions
2 vomsextract = "lcmaps_voms.mod \
3 -vomsdir /etc/grid-security/vomsdir/ \
4 -certdir /etc/grid-security/certificates/"
5
6 vomslocalgroup = "lcmaps_voms_localgroup.mod -mapmin 1 \
7 -groupmapfile /opt/edg/etc/lcmaps/groupmapfile"
8
9 jobrep = "lcmaps_jobrep.mod \

10 -vomsdir /etc/grid-security/vomsdir/ \
11 -certdir /etc/grid-security/certificates/ \
12 -jr_config /opt/edg/etc/lcmaps/jobrep_config"
13
14 posixenf = "lcmaps_posix_enf.mod -maxuid 1 -maxpgid 1 \
15 -maxsgid 32"
16
17 localaccount = "lcmaps_localaccount.mod \
18 -gridmapfile /etc/grid-security/grid-mapfile"
19
20 poolaccount = "lcmaps_poolaccount.mod \
21 -override_inconsistency \
22 -gridmapfile /etc/grid-security/grid-mapfile \
23 -gridmapdir /etc/grid-security/gridmapdir/"
24
25 # policies
26 voms:
27 vomsextract -> vomslocalgroup
28 vomslocalgroup -> jobrep
29 jobrep -> posixenf
30
31 standard:
32 localaccount -> jobrep | poolaccount
33 poolaccount -> jobrep
34 jobrep -> posixenf

Figure 11. Example configuration of LCMAPS.

them. The evaluation manager reads and compiles the
policy description. Upon receipt of an LCMAPS re-
quest it asks the plug-in manager to run the plug-ins in
the order prescribed by the policy.

There are two different logical module types: ac-
quisition modules and enforcement modules. Acqui-
sition modules look-up (or create) accounts in the
system and assign group IDs, based on e.g. VOMS at-
tributes. In the LCMAPS service a credential object is
filled with the acquired credential identifiers. Enforce-
ment modules take the content of the credential object
and attempt to enforce the credentials listed. There
is no difference in the interface between acquisition
and enforcement modules. The result (success/failure)

of the credential mapping is returned to the calling
application.

Figure 11 shows an example policy definition for
the LCMAPS state machine. There is a module defini-
tion (lines 2–23) followed by two policies called voms
and standard (lines 26–34). The module definitions
can be read like: alias = "[path/]module_file
[commandline_arguments_to_module]".

Next, are the policies which always start with their
name followed by a colon (lines 26 and 31). These
name declarations are followed by the actual rules, i.e.
lines 27–29 for the voms policy and lines 32–34 for
the standard policy. The policies are evaluated in the
given order. For each policy, the rules are evaluated



259

until the last rule or until a rule evaluates to false. If a
rule of a policy evaluates to false, the next policy will
be used or the whole call to the LCMAPS fails (i.e. if
no further policy is available).

The arrow sign -> combines two modules, e.g.
jobrep and posixenf. The latter one is executed if the
former is evaluated to the value true. If a rule evaluates
to true, the next one of the same policy will be exe-
cuted. The module following a pipe sign | is executed
if the first module of that rule evaluated to false, e.g.
line 32.

In the voms policy this means after a true state
of vomsextract the next module to be executed is
vomslocalgroup. If the state is vomsextract ended
in a false state, there is nothing to execute. This means
that this policy has failed. There still is another pol-
icy below this one (fail-over is only top to bottom).
standard will be the active policy now starting with
the localaccount module. On failure of this module
poolaccount will be executed. If poolaccount suc-
cessfully exits the jobrep module will be next. If this
module also ends successfully posixenf will be exe-
cuted. If posixenf turns out positive this policy has
been completed and if a policy ends in a completed
and successfull state, LCMAPS returns success to the
caller. If posixenf failed then there is no other policy
left to execute and LCMAPS will report failure.

8. Conclusion

In the course of the EU project DataGrid we de-
signed, implemented and deployed a framework for
the coordinated, autonomous management of multi-
ple heterogeneous clusters in a fabric. The framework
consists of the following building blocks:

− the Resource Management System for handling
jobs from different sources,

− the quattor system for software installation and
configuration,

− the Lemon component for monitoring the system’s
status,

− the FT mechanism for fault detection and recov-
ery, and

− the Gridification scheme for integrating fabrics
into a Grid.

These set of components allow to reduce the hu-
man maintenance in a cluster computing center dras-
tically. With automation and rule based error handling
the system is open for extensions and future require-
ments.

References

1. R. Alfieri, “VOMS: An Authorization System for Virtual Or-
ganizations”, in Proceedings of the 1st European Across Grids
Conference, Santiago de Compostela, Spain, 2003.

2. E. Anderson and D. Patterson, “Extensible, Scalable Monitor-
ing for Clusters of Computers”, in Proceedings of the 11th
Systems Administration Conference (LISA’97), San Diego,
CA, USA, 1997.

3. P. Anderson and A. Scobie, “LCFG: The Next Generation”, in
UKUUG Winter Conference, 2002.

4. S. Bethke, M. Calvetti, H. Hoffmann, D. Jacobs, M. Kase-
mann and D. Linglin, “Report of the Steering Group of the
LHC Computing Review”, Technical Report, CERN European
Organization for Nuclear Research, 2001.

5. B. Bode, D. Halstead, R. Kendall and Z. Lei, “The Portable
Batch Scheduler and the Maui Scheduler on Linux Clusters”,
in USENIX Conference, Atlanta, GA, 2000.

6. M. Burgess, “Cfengine: A Site Configuration Engine”,
USENIX Computing Systems, Vol. 8, No. 3, 1995.

7. DataGrid, “EU DataGrid Project Homepage”, 2004. http://
www.eu-datagrid.org/

8. I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, “A Secu-
rity Architecture for Computational Grids”, in Proceedings of
the 5th ACM Conference on Computer and Communications
Security Conference, San Francisco, CA, USA, pp. 83–92,
1998.

9. A. Frohner, “DataGrid Security Design Report”, Technical
Report, EU DataGrid Project, 2003.

10. Hawkeye, “Condor Hawkeye Homepage”, 2004. http://
www.cs.wisc.edu/condor/hawkeye/

11. R. Henderson, “Job Scheduling under the Portable Batch Sys-
tem”, in Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, Vol. 949, pp. 279–294,
1995.

12. S. Kannan, M. Roberts, P. Mayes, D. Brelsford and J. Skovira,
Workload Management with LoadLeveler, IBM Redbooks,
2001.

13. A. Keller and A. Reinefeld, “Anatomy of a Resource Manage-
ment System for HPC Clusters”, in Annual Review of Scalable
Computing, Vol. 3, 2001.

14. J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, Vol. 36, No. 1, 41–50, 2001.

15. M. Lorch, D.B. Adams, D. Kafura, M.S.R. Koneni, A. Rathi
and S. Shah, “The PRIMA System for Privilege Manage-
ment, Authorization and Enforcement in Grid Environments”,
in Proceedings of the 4th International Workshop on Grid
Computing – Grid 2003, Phoenix, AR, USA, 2003.

16. OSCAR, “OSCAR Homepage”, 2004. http://oscar.
sourceforge.net/

17. P. Papadopoulos, M. Katz and G. Bruno, “NPACI Rocks:
Tools and Techniques for Easily Deploying Manageable Linux
Clusters”, Concurrency and Computation: Practice and Expe-
rience, Vol. 15, Nos. 7–8, 707–725, 2003.

18. Patrol, “Patrol Homepage”, 2004. http://www-d0en.fnal.
gov/patrol/patrol_doc.html

19. Performance Co-Pilot, “Performance Co-Pilot Homepage”,
2004. http://oss.sgi.com/projects/pcp/

20. A. Reinefeld and V. Lindenstruth, “How to Build a High-
Performance Compute Cluster for the Grid”, in 2nd Interna-
tional Workshop on Metacomputing Systems and Applications
(MSA2001), Valencia, Spain, 2001.



260

21. T. Roeblitz, F. Schintke and A. Reinefeld, “From Clusters to
the Fabric: The Job Management Perspective”, in Proceedings
of the IEEE International Conference on Cluster Computing
(Cluster’03), Hong Kong, China, 2003.

22. F.D. Sacerdoti, M.J. Katz, M.L. Massie and D.E. Culler,
“Wide Area Cluster Monitoring with Ganglia”, in Proceedings
of the IEEE International Conference on Cluster Computing
(Cluster’03), Hong Kong, China, 2003.

23. SGE, “Sun Grid Engine Homepage”, 2004. http://www.sun.
com/software/gridware/

24. SNMP, “Simple Network Management Protocol”, 2004.
http://www.faqs.org/rfcs/rfc1157.html

25. P. Uthayopas, J. Maneesilp and P. Ingongnam, “SCMS: An
Integrated Cluster Management Tool for Beowulf Cluster Sys-
tem”, in Proceedings of the International Conference on Par-
allel and Distributed Proceeding Techniques and Applications
2000 (PDPTA’2000), Las Vegas, NV, USA, 2000.

26. VACM, “VACM Homepage”, 2004. http://vacm.
sourceforge.net/

27. S. Zhou, X. Zheng, J. Wang and P. Delisle, “Utopia: A Load
Sharing Facility for Large, Heterogenous Distributed Com-
puter Systems”, Software – Practice & Experience, Vol. 23,
No. 12, 1305–1336, 1993.


