375 research outputs found

    The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma

    Get PDF
    The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel–/– mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel–/– Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel–/– Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease. Moreover, Bach2 expression was also downregulated in c-rel–/– TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma seen in c-rel–/– mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression. These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2 expression, underlining the context-dependent complexity of NF-κB signalling in cancer

    Spin Excitations in La2CuO4: Consistent Description by Inclusion of Ring-Exchange

    Full text link
    We consider the square lattice Heisenberg antiferromagnet with plaquette ring exchange and a finite interlayer coupling leading to a consistent description of the spin-wave excitation spectrum in La2CuO4. The values of the in-plane exchange parameters, including ring-exchange J_{\Box}, are obtained consistently by an accurate fit to the experimentally observed in-plane spin-wave dispersion, while the out-of-plane exchange interaction is found from the temperature dependence of the sublattice magnetization at low temperatures. The fitted exchange interactions J=151.9 meV and J_{\Box}=0.24 J give values for the spin stiffness and the Neel temperature in excellent agreement with the experimental data.Comment: 4 pages, 1 figure, RevTe

    Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway

    Get PDF
    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog

    Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction

    Get PDF
    Background Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation – the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. Methods To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. Results We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. Conclusion These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function

    Dynamic testing and transfer: An examination of children's problem-solving strategies

    Get PDF
    This study examined the problem-solving behaviour of 104 children (aged 7–8 years) when tackling construction-analogy tasks. Children were allocated to one of two conditions: either a form of unguided practice alone or this in combination with training based on graduated prompt techniques. Children's ability to solve figural open-ended analogy-problems was investigated as well as their ability to construct new analogy problems themselves. We examined children's progression in solving analogy problems and the variability in their strategy-use. Results showed that the group that received training made greater progress in solving analogy problems than children who only received unguided practice opportunities. However, the training appeared to give no additional improvement in performance on the transfer task over that of repeated unguided practice alone. Findings from this study demonstrate that an open construction task can provide additional information about children's cognitive learning potential

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Optimization of blood handling and peripheral blood mononuclear cell cryopreservation of low cell number samples

    Get PDF
    Background: Rural/remote blood collection can cause delays in processing, reducing PBMC number, viability, cell composition and function. To mitigate these impacts, blood was stored at 4 °C prior to processing. Viable cell number, viability, immune phenotype, and Interferon-γ (IFN-γ) release were measured. Furthermore, the lowest protective volume of cryopreservation media and cell concentration was investigated. Methods: Blood from 10 individuals was stored for up to 10 days. Flow cytometry and IFN-γ ELISPOT were used to measure immune phenotype and function on thawed PBMC. Additionally, PBMC were cryopreserved in volumes ranging from 500 µL to 25 µL and concentration from 10 × 10⁶ cells/mL to 1.67 × 10⁶ cells/mL. Results: PBMC viability and viable cell number significantly reduced over time compared with samples processed immediately, except when stored for 24 h at RT. Monocytes and NK cells significantly reduced over time regardless of storage temperature. Samples with >24 h of RT storage had an increased proportion in Low-Density Neutrophils and T cells compared with samples stored at 4 °C. IFN-γ release was reduced after 24 h of storage, however not in samples stored at 4 °C for >24 h. The lowest protective volume identified was 150 µL with the lowest density of 6.67 × 10⁶ cells/mL. Conclusion: A sample delay of 24 h at RT does not impact the viability and total viable cell numbers. When long-term delays exist (>4 d) total viable cell number and cell viability losses are reduced in samples stored at 4 °C. Immune phenotype and function are slightly altered after 24 h of storage, further impacts of storage are reduced in samples stored at 4 °C.Christopher M. Hope, Dao Huynh, Ying Ying Wong, Helena Oakey, Griffith Boord Perkins, Trung Nguyen, Sabrina Binkowski, Minh Bui, Ace Y.L. Choo, Emily Gibson, Dexing Huang, Ki Wook Kim, Katrina Ngui, William D. Rawlinson, Timothy Sadlon, Jennifer J. Couper, Megan A.S. Penno, Simon C. Barry, and on behalf of the ENDIA Study Grou

    Counterpoint. Early intervention for psychosis risk syndromes: Minimizing risk and maximizing benefit

    Get PDF
    Background: Malhi et al. in this issue critique the clinical high risk (CHR) syndrome for psychosis. Method: Response to points of critique. Results: We agree that inconsistency in CHR nomenclature should be minimized. We respectfully disagree on other points. In our view: a) individuals with CHR and their families need help, using existing interventions, even though we do not yet fully understand disease mechanisms; b) substantial progress has been made in identification of biomarkers; c) symptoms used to identify CHR are specific to psychotic illnesses; d) CHR diagnosis is not “extremely difficult”; e) the pattern of progression, although heterogenous, is discernible; f) “psychosis-like symptoms” are common but are not used to identify CHR; and g) on the point described as ‘the real risk,’ CHR diagnosis does not frequently cause harmful stigma. Discussion: Malhi et al.'s arguments do not fairly characterize progress in the CHR field nor efforts to minimize stigma. That said, much work remains in areas of consistent nomenclature, mechanisms of disease, dissecting heterogeneity, and biomarkers. With regard to what the authors term the “real risk” of stigma associated with a CHR “label,” however, our view is that avoiding words like “risk” and “psychosis” reinforces the stigma that both they and we mean to oppose. Moreover, patients and their families benefit from being given a term that describes what is happening to them
    corecore