177 research outputs found
Recommended from our members
Heightened hurricane surge risk in northwest Florida revealed from climatological-hydrodynamic modeling and paleorecord reconstruction
Historical tropical cyclone (TC) and storm surge records are often too limited to quantify the risk to local populations. Paleohurricane sediment records uncover long-term TC activity, but interpreting these records can be difficult and can introduce significant uncertainties. Here we compare and combine climatological-hydrodynamic modeling (including a method to account for storm size uncertainty), historical observations, and paleohurricane records to investigate local surge risk, using Apalachee Bay in northwest Florida as an example. The modeling reveals relatively high risk, with 100 year, 500 year, and “worst case” surges estimated to be about 6.3 m, 8.3 m, and 11.3 m, respectively, at Bald Point (a paleorecord site) and about 7.4 m, 9.7 m, and 13.3 m, respectively, at St. Marks (the head of the Bay), supporting the inference from paleorecords that Apalachee Bay has frequently suffered severe inundation for thousands of years. Both the synthetic database and paleorecords contain a much higher frequency of extreme events than the historical record; the mean return period of surges greater than 5 m is about 40 years based on synthetic modeling and paleoreconstruction, whereas it is about 400 years based on historical storm analysis. Apalachee Bay surge risk is determined by storms of broad characteristics, varies spatially over the area, and is affected by coastally trapped Kelvin waves, all of which are important features to consider when accessing the risk and interpreting paleohurricane records. In particular, neglecting size uncertainty may induce great underestimation in surge risk, as the size distribution is positively skewed. While the most extreme surges were generated by the uppermost storm intensities, medium intensity storms (categories 1–3) can produce large to extreme surges, due to their larger inner core sizes. For Apalachee Bay, the storms that induced localized barrier breaching and limited sediment transport (overwash regime; surge between 3 and 5 m) are most likely to be category 2 or 3 storms, and the storms that inundated the entire barrier and deposited significantly more coarse materials (inundation regime; surge > 5 m) are most likely to be category 3 or 4 storms.United States. National Oceanic and Atmospheric Administration (Grant NA11OAR4310101)National Science Foundation (U.S.) (Grant OCE-0903020)National Science Foundation (U.S.) (Grant OCE-1250506
Recommended from our members
The poleward migration of the location of tropical cyclone maximum intensity
Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions
Recommended from our members
Cluster analysis of downscaled and explicitly simulated North Atlantic tropical cyclone tracks
A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in US landfalling systems. Here we present a tentative study, which examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1° to 0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and sub-tropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity and power dissipation index in each cluster are documented for both configurations. Our results show that except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. We also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, we examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Recommended from our members
The contribution of tropical cyclones to the atmospheric branch of Middle America's hydrological cycle using observed and reanalysis tracks
Middle America is affected by tropical cyclones (TCs) from the Eastern Pacific and the North Atlantic Oceans. We characterize the regional climatology (1998-2016) of the TC contributions to the atmospheric branch of the hydrological cycle, from May to December. TC contributions to rainfall are quantified using Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product 3B42 and TC tracks derived from three sources: the International Best Track Archive for Climate Stewardship (IBTrACS), and an objective feature tracking method applied to the Japanese 55-year and ERA-Interim reanalyses. From July to October, TCs contribute 10-30% of rainfall over the west and east coast of Mexico and central Mexico, with the largest monthly contribution during September over the Baja California Peninsula (up to 90%). TCs are associated with 40-60% of daily extreme rainfall (above the 95th percentile) over the coasts of Mexico. IBTrACS and reanalyses agree on TC contributions over the Atlantic Ocean but disagree over the Eastern Pacific Ocean and continent; differences over the continent are mainly attributed to discrepancies in TC tracks in proximity to the coast and TC lifetime. Reanalysis estimates of TC moisture transports show that TCs are an important moisture source for the regional water budget. TC vertically integrated moisture flux (VIMF) convergence can turn regions of weak VIMF divergence by the mean circulation into regions of weak VIMF convergence. We discuss deficiencies in the observed and reanalysis TC tracks, which limit our ability to quantify robustly the contribution of TCs to the regional hydrological cycle
Recommended from our members
Statistical decadal predictions for sea surface temperatures: a benchmark for dynamical GCM predictions
Accurate decadal climate predictions could be used to inform adaptation actions to a changing climate. The skill of such predictions from initialised dynamical global climate models (GCMs) may be assessed by comparing with predictions from statistical models which are based solely on historical observations. This paper presents two benchmark statistical models for predicting both the radiatively forced trend and internal variability of annual mean sea surface temperatures (SSTs) on a decadal timescale based on the gridded observation data set HadISST. For both statistical models, the trend related to radiative forcing is modelled using a linear regression of SST time series at each grid box on the time series of equivalent global mean atmospheric CO2 concentration. The residual internal variability is then modelled by (1) a first-order autoregressive model (AR1) and (2) a constructed analogue model (CA). From the verification of 46 retrospective forecasts with start years from 1960 to 2005, the correlation coefficient for anomaly forecasts using trend with AR1 is greater than 0.7 over parts of extra-tropical North Atlantic, the Indian Ocean and western Pacific. This is primarily related to the prediction of the forced trend. More importantly, both CA and AR1 give skillful predictions of the internal variability of SSTs in the subpolar gyre region over the far North Atlantic for lead time of 2 to 5 years, with correlation coefficients greater than 0.5. For the subpolar gyre and parts of the South Atlantic, CA is superior to AR1 for lead time of 6 to 9 years. These statistical forecasts are also compared with ensemble mean retrospective forecasts by DePreSys, an initialised GCM. DePreSys is found to outperform the statistical models over large parts of North Atlantic for lead times of 2 to 5 years and 6 to 9 years, however trend with AR1 is generally superior to DePreSys in the North Atlantic Current region, while trend with CA is superior to DePreSys in parts of South Atlantic for lead time of 6 to 9 years. These findings encourage further development of benchmark statistical decadal prediction models, and methods to combine different predictions
State of the climate in 2013
In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved
A coupled method for initializing El Niño Southern Oscillation forecasts using sea surface temperature
A simple method for initializing coupled general circulation models (CGCMs) using only sea surface temperature (SST) data is comprehensively tested in an extended set of ensemble hindcasts with the Max-Planck-Institute (MPI) climate model, MPI-OM/ECHAM5. In the scheme, initial conditions for both atmosphere and ocean are generated by running the coupled model with SST nudged strongly to observations. Air–sea interaction provides the mechanism through which SST influences the subsurface. Comparison with observations indicates that the scheme is performing well in the tropical Pacific.
Results from a 500-yr control run show that the model's El Niño Southern Oscillation (ENSO) variability is quite realistic, in terms of strength, structure and period. The hindcasts performed were six months long, initiated four times per year, consisted of nine ensemble members, and covered the period 1969–2001. The ensemble was generated by only varying atmospheric initial conditions, which were sampled from the initialization run to capture intraseasonal variability. At six-month lead, the model is able to capture all the major ENSO extremes of the period. However, because of poor sampling of ocean initial conditions and model deficiencies, the ensemble-mean anomaly correlation skill for Niño3 SST is only 0.6 at six-month lead. None the less, the results presented here demonstrate the potential of such a simple scheme, and provide a simple method by which SST information may be better used in more complex initialization schemes
- …