1,217 research outputs found

    Limits on Electron Neutrino Disappearance from the KARMEN and LSND electron neutrino - Carbon Cross Section Data

    Full text link
    This paper presents a combined analysis of the KARMEN and LSND nu_e-carbon cross section measurements within the context of a search for nu_e disappearance at high Delta m^2. KARMEN and LSND were located at 17.7 m and 29.8 m respectively from the neutrino source, so the consistency of the two measurements, as a function of antineutrino energy, sets strong limits on neutrino oscillations. Most of the allowed region from the nu_e disappearance analysis of the Gallium calibration data is excluded at >95% CL and the best fit point is excluded at 3.6σ\sigma. Assuming CPT conservation, comparisons are also made to the oscillation analyses of reactor antineutrino data.Comment: Published versio

    Using Reactors to Measure θ13\theta_{13}

    Full text link
    A next-generation neutrino oscillation experiment using reactor neutrinos could give important information on the size of mixing angle θ13\theta_{13}. The motivation and goals for a new reactor measurement are discussed in the context of other measurements using off-axis accelerator neutrino beams. The reactor measurements give a clean measure of the mixing angle without ambiguities associated with the size of the other mixing angles, matter effects, and effects due to CP violation. The key question is whether a next-generation experiment can reach the needed sensitivity goals to make a measurement for sin22θ13\sin^{2}2\theta_{13} at the 0.01 level. The limiting factors associated with a reactor disappearance measurement are described with some ideas of how sensitivities can be improved. Examples of possible experimental setups are presented and compared with respect to cost and sensitivity

    Comparisons and Combinations of Reactor and Long-Baseline Neutrino Oscillation Measurements

    Full text link
    We investigate how the data from various future neutrino oscillation experiments will constrain the physics parameters for a three active neutrino mixing model. The investigations properly account for the degeneracies and ambiguities associated with the phenomenology as well as estimates of experimental measurement errors. Combinations of various reactor measurements with the expected J-PARC (T2K) and NuMI offaxis (Nova) data, both with and without the increased flux associated with proton driver upgrades, are considered. The studies show how combinations of reactor and offaxis data can resolve degeneracies (e.g. the theta23 degeneracy) and give more precise information on the oscillation parameters. A primary purpose of this investigation is to establish the parameter space regions where CP violation can be discovered and where the mass hierarchy can be determined. It is found that such measurements, even with the augmented flux from proton driver upgrades, demand sin^2 (2 theta13) be fairly large and in the range where it is measurable by reactor experiments.Comment: 25 pages, 13 figures, fixed typos; 25 pages, 13 figures, updated content, references; previous 22 pages, 12 figures, added references and fixed reference display proble

    Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects

    Full text link
    We examine the MiniBooNE neutrino, MiniBooNE antineutrino and LSND antineutrino data sets in a two-neutrino ν()μν()e\stackrel{\tiny{(-)}}{\nu}_{\mu}\rightarrow\stackrel{\tiny{(-)}}{\nu}_e oscillation approximation subject to non-standard matter effects. We assume those effects can be parametrized by an LL-independent effective potential, Vs=±AsV_s=\pm A_s, experienced only by an intermediate, non-weakly-interacting (sterile) neutrino state which we assume participates in the oscillation, where +/+/- corresponds to neutrino/antineutrino propagation. We discuss the mathematical framework in which such oscillations arise in detail, and derive the relevant oscillation probability as a function of the vacuum oscillation parameters Δm2\Delta m^2 and sin22θμe\sin^22\theta_{\mu e}, and the matter effect parameter AsA_s. We are able to successfully fit all three data sets, including the MiniBooNE low energy excess, with the following best-fit model parameters: Δm2=0.47\Delta m^2=0.47 eV2^2, sin22θμe=0.010\sin^22\theta_{\mu e}=0.010, and As=2.0×1010A_s=2.0\times10^{-10} eV. The χ2\chi^2-probability for the best fit corresponds to 21.6%, to be compared to 6.8% for a fit where AsA_s has been set to zero, corresponding to a (3+1) sterile neutrino oscillation model. We find that the compatibility between the three data sets corresponds to 17.4%, to be compared to 2.3% for As=0A_s=0. Finally, given the fit results, we examine consequences for reactor, solar, and atmospheric oscillations. For this paper, the presented model is empirically driven, but the results obtained can be directly used to investigate various phenomenological interpretations such as non-standard matter effects.Comment: 19 pages, 11 figures, 1 tabl

    Collective force generation by groups of migrating bacteria

    Full text link
    From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching of bacterial groups also produces traction hotspots, however with amplified forces around 100 pN. Although twitching groups migrate slowly as a whole, traction fluctuates rapidly on timescales <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified in groups by a factor of ~5. Since advancing protrusions of gliding cells push on average in the direction of motion, we infer a long-range compressive load sharing among sub-leading cells. Together, these results show that the forces generated during twitching and gliding have complementary characters and both forces are collectively amplified in groups

    Predictability and hierarchy in Drosophila behavior

    Full text link
    Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent amongst the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested sub-clusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states

    Curvature and torsion in growing actin networks

    Full text link
    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 seconds. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a 3D space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature rather than a fixed torque
    corecore