1,514 research outputs found

    Impact of along-valley orographic variations on the dispersion of passive tracers in a stable atmosphere

    Get PDF
    © 2019 by the authors.A numerical model is used to investigate the transport of passive tracers in an idealized Alpine valley during stable wintertime conditions after the evening transition. The valley is composed of an upstream-valley section, which opens on a narrower downstream valley section, which opens onto a plain. The ratio between the valley-floor widths of the upstream and downstream sections is either 4 (simulation P1) or 11.5 (P2). The change in the thermal structure of the atmosphere in the along-valley direction and over the plain leads to the development of an along-valley flow. This flow is up-valley in the upstream section during the first three hours of the P1 simulation, reversing to the down-valley direction afterwards, but remains up-valley during the six hours of the P2 simulation. The effect of wind dynamics on the dispersion of passive scalars is identified by tracking areas prone to stagnation, recirculation, and ventilation using the methodology developed by Allwine and Whiteman (1994). Zones identified as prone to stagnation are consistent with those of high tracer concentration in both simulations. The narrowing of the valley is found to significantly reduce ventilation in the upstream section, an observation quantified by a ventilation efficiency.Peer reviewedFinal Published versio

    Uncertainty Quantification of Future Design Rainfall Depths in Korea

    Get PDF
    One of the most common ways to investigate changes in future rainfall extremes is to use future rainfall data simulated by climate models with climate change scenarios. However, the projected future design rainfall intensity varies greatly depending on which climate model is applied. In this study, future rainfall Intensity???Duration???Frequency (IDF) curves are projected using various combinations of climate models. Future Ensemble Average (FEA) is calculated using a total of 16 design rainfall intensity ensembles, and uncertainty of FEA is quantified using the coefficient of variation of ensembles. The FEA and its uncertainty vary widely depending on how the climate model combination is constructed, and the uncertainty of the FEA depends heavily on the inclusion of specific climate model combinations at each site. In other words, we found that unconditionally using many ensemble members did not help to reduce the uncertainty of future IDF curves. Finally, a method for constructing ensemble members that reduces the uncertainty of future IDF curves is proposed, which will contribute to minimizing confusion among policy makers in developing climate change adaptation policies

    Migrant Remittances in Rural Nepal: A Mixed Methods Household-level Analysis

    Get PDF
    This paper aspires to add to the bourgeoning field of interest concerning migration practices in the Gulf States. Based upon first hand ethnographic experience conducted in Bhairawah, southern Nepal, this paper hopes to encourage a deeper, more humanistic exploration of migratory practices that are currently approached from a political and economic lens. This paper begins with a chronological analysis and description of individual and household experience with migration. Moving further, this paper touches on a change over time of traditional gender roles for women

    Numerical representation of geostrophic modes on arbitrarily structured C-grids

    Get PDF
    Copyright © 2009 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics, Vol. 228, Issue 22 (2009), DOI: 10.1016/j.jcp.2009.08.006A C-grid staggering, in which the mass variable is stored at cell centers and the normal velocity component is stored at cell faces (or edges in two dimensions) is attractive for atmospheric modeling since it enables a relatively accurate representation of fast wave modes. However, the discretization of the Coriolis terms is non-trivial. For constant Coriolis parameter, the linearized shallow water equations support geostrophic modes: stationary solutions in geostrophic balance. A naive discretization of the Coriolis terms can cause geostrophic modes to become non-stationary, causing unphysical behaviour of numerical solutions. Recent work has shown how to discretize the Coriolis terms on a planar regular hexagonal grid to ensure that geostrophic modes are stationary while the Coriolis terms remain energy conserving. In this paper this result is extended to arbitrarily structured C-grids. An explicit formula is given for constructing an appropriate discretization of the Coriolis terms. The general formula is illustrated by showing that it recovers previously known results for the planar regular hexagonal C-grid and the spherical longitude–latitude C-grid. Numerical calculation confirms that the scheme does indeed give stationary geostrophic modes for the hexagonal–pentagonal and triangular geodesic C-grids on the sphere

    A Comparison of Two Shallow Water Models with Non-Conforming Adaptive Grids: classical tests

    Get PDF
    In an effort to study the applicability of adaptive mesh refinement (AMR) techniques to atmospheric models an interpolation-based spectral element shallow water model on a cubed-sphere grid is compared to a block-structured finite volume method in latitude-longitude geometry. Both models utilize a non-conforming adaptation approach which doubles the resolution at fine-coarse mesh interfaces. The underlying AMR libraries are quad-tree based and ensure that neighboring regions can only differ by one refinement level. The models are compared via selected test cases from a standard test suite for the shallow water equations. They include the advection of a cosine bell, a steady-state geostrophic flow, a flow over an idealized mountain and a Rossby-Haurwitz wave. Both static and dynamics adaptations are evaluated which reveal the strengths and weaknesses of the AMR techniques. Overall, the AMR simulations show that both models successfully place static and dynamic adaptations in local regions without requiring a fine grid in the global domain. The adaptive grids reliably track features of interests without visible distortions or noise at mesh interfaces. Simple threshold adaptation criteria for the geopotential height and the relative vorticity are assessed.Comment: 25 pages, 11 figures, preprin

    A standard test case suite for two-dimensional linear transport on the sphere

    Get PDF
    It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, "minimal" resolution, the ability of the transport scheme to preserve filaments, transport "rough" distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions. <br><br> The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent) and four analytical initial conditions (varying from smooth to discontinuous). Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a "true" solution is needed. Results using the CSLAM (Conservative Semi-Lagrangian Multi-tracer) scheme on the cubed-sphere are presented for reference and illustrative purposes

    An analysis of the feasibility and benefits of GPU/multicore acceleration of the Weather Research and Forecasting model

    Get PDF
    There is a growing need for ever more accurate climate and weather simulations to be delivered in shorter timescales, in particular, to guard against severe weather events such as hurricanes and heavy rainfall. Due to climate change, the severity and frequency of such events – and thus the economic impact – are set to rise dramatically. Hardware acceleration using graphics processing units (GPUs) or Field-Programmable Gate Arrays (FPGAs) could potentially result in much reduced run times or higher accuracy simulations. In this paper, we present the results of a study of the Weather Research and Forecasting (WRF) model undertaken in order to assess if GPU and multicore acceleration of this type of numerical weather prediction (NWP) code is both feasible and worthwhile. The focus of this paper is on acceleration of code running on a single compute node through offloading of parts of the code to an accelerator such as a GPU. The governing equations set of the WRF model is based on the compressible, non-hydrostatic atmospheric motion with multi-physics processes. We put this work into context by discussing its more general applicability to multi-physics fluid dynamics codes: in many fluid dynamics codes, the numerical schemes of the advection terms are based on finite differences between neighboring cells, similar to the WRF code. For fluid systems including multi-physics processes, there are many calls to these advection routines. This class of numerical codes will benefit from hardware acceleration. We studied the performance of the original code of the WRF model and proposed a simple model for comparing multicore CPU and GPU performance. Based on the results of extensive profiling of representative WRF runs, we focused on the acceleration of the scalar advection module. We discuss the implementation of this module as a data-parallel kernel in both OpenCL and OpenMP. We show that our data-parallel kernel version of the scalar advection module runs up to seven times faster on the GPU compared with the original code on the CPU. However, as the data transfer cost between GPU and CPU is very high (as shown by our analysis), there is only a small speed-up (two times) for the fully integrated code. We show that it would be possible to offset the data transfer cost through GPU acceleration of a larger portion of the dynamics code. In order to carry out this research, we also developed an extensible software system for integrating OpenCL code into large Fortran code bases such as WRF. This is one of the main contributions of our work. We discuss the system to show how it allows the replacement of the sections of the original codebase with their OpenCL counterparts with minimal changes – literally only a few lines – to the original code. Our final assessment is that, even with the current system architectures, accelerating WRF – and hence also other, similar types of multi-physics fluid dynamics codes – with a factor of up to five times is definitely an achievable goal. Accelerating multi-physics fluid dynamics codes including NWP codes is vital for its application to weather forecasting, environmental pollution warning, and emergency response to the dispersion of hazardous materials. Implementing hardware acceleration capability for fluid dynamics and NWP codes is a prerequisite for up-to-date and future computer architectures

    Consideration of Wind Speed Variability in Creating a Regional Aggregate Wind Power Time Series

    Get PDF
    For the purposes of understanding the impacts on the electricity network, estimates of hourly aggregate wind power generation for a region are required. However, the availability of wind production data for the UK is limited, and studies often rely on measured wind speeds from a network of meteorological (met) stations. Another option is to use historical wind speeds from a reanalysis dataset, with a resolution of around 40–50 km. Mesoscale models offer a potentially more desirable solution, with a homogeneous set of wind speeds covering a wide area at resolutions of 1–50 km, but they are computationally expensive to run at high resolution. An understanding of the most appropriate choice of data requires knowledge of the variability in time and space and how well that is represented by the choice of model. Here it is demonstrated that in regions offshore, or in relatively smooth terrain where variability in wind speeds is smaller, lower resolution models or single point records may suffice to represent aggregate power generation in a sub-region. The need for high resolution modelling in areas of complex terrain where spatial and temporal variability is higher is emphasised, particularly when the distribution of wind generation capacity is uneven over the region
    corecore