39 research outputs found

    Linking in situ Crystallisation and Magma Replenishment via Sill Intrusion in the Rum Western Layered Intrusion, NW Scotland

    Get PDF
    The construction of layered mafic-ultramafic intrusions has traditionally been attributed to gravity driven accumulation, involving the mechanical settling of crystals onto the magma chamber floor, at the interface between the crystal mush at the base and overlying replenishing magma, such that the layered sequence of cumulates (i.e., the crystal mush) at the floor aggrades upwards. The Rum Western Layered Intrusion (WLI) is a ~250 m sequence of layered peridotite cumulates comprising the structurally lowest portion of the Rum Layered Suite (RLS). As such, it is taken to represent the oldest sequence in the RLS and has been assumed to young upwards. The WLI hosts the largest proportion of harrisite, a cumulate composed of skeletal olivine that formed by in situ crystallisation, in the Rum layered intrusion. Harrisite layers in the WLI ubiquitously exhibit extremely irregular upward-oriented apophyses, up to several metres high and metres across, alongside laterally extensive dome-like structures; features consistent with intrusive, sill-like emplacement of harrisite. The distribution and abundance of harrisite therefore points to chaotic sill-like emplacement of the magmas that produced at least half of the WLI cumulate. This probably occurred various ambient crystal mush temperatures and punctuated intervals during cumulate formation. The harrisite layers are associated with numerous Cr-spinel seams occurring along the tops, bases, and interiors of these layers, suggesting they formed in situ alongside harrisite sills within the crystal mush. Detailed quantitative textural and mineral chemical analysis of Cr-spinel seams support a simple in situ crystallisation process for their formation. It is suggested the Cr-spinel seams form within melt channels that develop along the same hot tears that allowed the harrisite parental melts to enter the crystal mush. The chemistry and texture of Cr-spinel is controlled by the volume of through-flow of melt through the melt channel. Where melt flux through channels was high, sulphide and platinumgroup minerals are more abundant, highlighting the key economic implications of this model for the platinum-group element enrichment of chromitite horizons in layered intrusions. We also highlight the role of infiltration metasomatism at multiple levels of the WLI, where porous percolation of interstitial melt and reactive liquid flow played a key role in cumulate formation, supporting the notion of layered intrusion growth by incremental sill emplacement

    Petrogenesis of the Loch BĂ  ring-dyke and Centre 3 granites, Isle of Mull, Scotland

    Get PDF
    The project was supported by Science Foundation Ireland (SFI), the Royal Irish Academy (RIA) and by the Swedish Research Council (VR). Open Access funding provided by Uppsala University.The Loch Bà ring-dyke and the associated Centre 3 granites represent the main events of the final phase of activity at the Palaeogene Mull igneous complex. The Loch Bà ring-dyke is one of the best exposed ring-intrusions in the world and records intense interaction between rhyolitic and basaltic magma. To reconstruct the evolutionary history of the Centre 3 magmas, we present new major- and trace-element, and new Sr isotope data as well as the first Nd and Pb isotope data for the felsic and mafic components of the Loch Bà intrusion and associated Centre 3 granites. We also report new Sr, Nd and Pb isotope data for the various crustal compositions from the region, including Moine and Dalradian metasedimentary rocks, Lewisian gneiss, and Iona Group metasediments. Isotope data for the Loch Bà rhyolite (87Sr/86Sri = 0.716) imply a considerable contribution of local Moine-type metasedimentary crust (87Sr/86Sr = 0.717–0.736), whereas Loch Bà mafic inclusions (87Sr/86Sri = 0.704–0.707) are closer to established mantle values, implying that felsic melts of dominantly crustal origin mixed with newly arriving basalt. The Centre 3 microgranites (87Sr/86Sri = 0.709–0.716), are less intensely affected by crustal assimilation relative to the Loch Bá rhyolite. Pb-isotope data confirm incorporation of Moine metasediments within the Centre 3 granites. Remarkably, the combined Sr–Nd–Pb data indicate that Centre 3 magmas record no detectable interaction with underlying deep Lewisian gneiss basement, in contrast to Centre 1 and 2 lithologies. This implies that Centre 3 magmas ascended through previously depleted or insulated feeding channels into upper-crustal reservoirs where they resided within and interacted with fertile Moine-type upper crust prior to eruption or final emplacement.Publisher PDFPeer reviewe

    The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge

    Get PDF
    The breakup of Laurasia to form the Northeast Atlantic Realm was the culmination of a long period of tectonic unrest extending back to the Late Palaeozoic. Breakup was prolonged and complex and disintegrated an inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins formed, which are blanketed by lavas and underlain variously by magma-inflated, extended continental crust and mafic high-velocity lower crust of ambiguous and probably partly continental provenance. New rifts formed by diachronous propagation along old zones of weakness. North of the Greenland-Iceland-Faroe Ridge the newly forming rift propagated south along the Caledonian suture. South of the Greenland-Iceland-Faroe Ridge it propagated north through the North Atlantic Craton along an axis displaced ~ 150 km to the west of the northern rift. Both propagators stalled where the confluence of the Nagssugtoqidian and Caledonian orogens formed a transverse barrier. Thereafter, the ~ 400-km-wide latitudinal zone between the stalled rift tips extended in a distributed, unstable manner along multiple axes of extension that frequently migrated or jumped laterally with shearing occurring between them in diffuse transfer zones. This style of deformation continues to the present day. It is the surface expression of underlying magma-assisted stretching of ductile mid- and lower continental crust which comprises the Icelandic-type lower crust that underlies the Greenland-Iceland-Faroe Ridge. This, and probably also one or more full-crustal-thickness microcontinents incorporated in the Ridge, are capped by surface lavas. The Greenland-Iceland-Faroe Ridge thus has a similar structure to some zones of seaward-dipping reflectors. The contemporaneous melt layer corresponds to the 3–10 km thick Icelandic-type upper crust plus magma emplaced in the ~ 10–30-km-thick Icelandic-type lower crust. This model can account for seismic and gravity data that are inconsistent with a gabbroic composition for Icelandic-type lower crust, and petrological data that show no reasonable temperature or source composition could generate the full ~ 40-km thickness of Icelandic-type crust observed. Numerical modeling confirms that extension of the continental crust can continue for many tens of Myr by lower-crustal flow from beneath the adjacent continents. Petrological estimates of the maximum potential temperature of the source of Icelandic lavas are up to 1450 °C, no more than ~ 100 °C hotter than MORB source. The geochemistry is compatible with a source comprising hydrous peridotite/pyroxenite with a component of continental mid- and lower crust. The fusible petrology, high source volatile contents, and frequent formation of new rifts can account for the true ~ 15–20 km melt thickness at the moderate temperatures observed. A continuous swathe of magma-inflated continental material beneath the 1200-km-wide Greenland-Iceland-Faroe Ridge implies that full continental breakup has not yet occurred at this latitude. Ongoing tectonic instability on the Ridge is manifest in long-term tectonic disequilibrium on the adjacent rifted margins and on the Reykjanes Ridge, where southerly migrating propagators that initiate at Iceland are associated with diachronous swathes of unusually thick oceanic crust. Magmatic volumes in the NE Atlantic Realm have likely been overestimated and the concept of a monogenetic North Atlantic Igneous Province needs to be reappraised. A model of complex, piecemeal breakup controlled by pre-existing structures that produces anomalous volcanism at barriers to rift propagation and distributes continental material in the growing oceans fits other oceanic regions including the Davis Strait and the South Atlantic and West Indian oceans

    Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    No full text
    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.</p

    Cr-spinel Seam Petrogenesis in the Rum Layered Suite, NW Scotland:Cumulate Assimilation and <em>in situ</em> Crystallization in a Deforming Crystal Mush

    No full text
    Laterally extensive (∌2 mm thick) Cr-spinel seams in the Rum Layered Suite, NW Scotland, occur at the bases of several of the coupled peridotite–troctolite macro-rhythmic units that form the bulk of the eastern part of the intrusion. Detailed petrography, mineral chemical analyses and quantitative textural measurements of the rocks above and below two of these seams suggest that existing models for seam petrogenesis involving early crystallization and gravitational settling of Cr-spinel from a newly emplaced body of magma need to be reassessed. We argue for assimilation of troctolitic cumulate by a new influx of picrite magma at the crystal mush–magma interface, and subsequent in situ crystallization of the Cr-spinel seams. The bases of seams are characterized by Mg- and Al-rich Cr-spinel, with slightly more Fe-rich crystals toward the tops. These seams crystallized from a superheated hybrid magma generated by the initial assimilation and dissolution of the plagioclase-rich cumulate floor by the picrite. Coeval syn-magmatic deformation of the crystal mush at the unit boundary between peridotite and troctolite caused localized expulsion of Cr-spinel seed crystals several centimetres upward into the peridotite mush, resulting in the formation of overlying supra-seams as well as possibly developing a distinctive texture comprising chains of Cr-spinel around cumulus olivine crystals immediately above unit boundaries. The mineral compositional and textural evidence collected from the Rum Cr-spinel seams also indicates that they exhibit varying degrees of postcumulus chemical and textural equilibration
    corecore