800 research outputs found
Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging
The Fourier inversion of phased coherent diffraction patterns offers images
without the resolution and depth-of-focus limitations of lens-based tomographic
systems. We report on our recent experimental images inverted using recent
developments in phase retrieval algorithms, and summarize efforts that led to
these accomplishments. These include ab-initio reconstruction of a
two-dimensional test pattern, infinite depth of focus image of a thick object,
and its high-resolution (~10 nm resolution) three-dimensional image.
Developments on the structural imaging of low density aerogel samples are
discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa
An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy
X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is
being practiced at several third-generation synchrotron-radiation x-ray
facilities. Although only five years have elapsed since the technique was first
introduced, it has made rapid progress in demonstrating high-resolution
threedimensional imaging and promises few-nm resolution with much larger
samples than can be imaged in the transmission electron microscope. Both life-
and materials-science applications of XDM are intended, and it is expected that
the principal limitation to resolution will be radiation damage for life
science and the coherent power of available x-ray sources for material science.
In this paper we address the question of the role of radiation damage. We use a
statistical analysis based on the so-called "dose fractionation theorem" of
Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience
sample by XDM with a given resolution. We conclude that the needed dose scales
with the inverse fourth power of the resolution and present experimental
evidence to support this finding. To determine the maximum tolerable dose we
have assembled a number of data taken from the literature plus some
measurements of our own which cover ranges of resolution that are not well
covered by reports in the literature. The tentative conclusion of this study is
that XDM should be able to image frozen-hydrated protein samples at a
resolution of about 10 nm with "Rose-criterion" image quality.Comment: 9 pages, 4 figure
T-cell subpopulations αβ and γδ in cord blood of very preterm infants : The influence of intrauterine infection
Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPreterm infants are very susceptible to infections. Immune response mechanisms in this group of patients and factors that influence cord blood mononuclear cell populations remain poorly understood and are considered insufficient. However, competent immune functions of the cord blood mononuclear cells are also described. The aim of this work was to evaluate the T-cell population (CD3+) with its subpopulations bearing T-cell receptor (TCR) αβ or TCR γδ in the cord blood of preterm infants born before 32 weeks of gestation by mothers with or without an intrauterine infection. Being a pilot study, it also aimed at feasibility check and assessment of an expected effect size. The cord blood samples of 46 infants age were subjected to direct immunofluorescent staining with monoclonal antibodies and then analyzed by flow cytometry. The percentage of CD3+ cells in neonates born by mothers with diagnosis of intrauterine infection was significantly lower than in neonates born by mothers without infection (p = 0.005; Mann-Whitney U test). The number of cells did not differ between groups. Infection present in the mother did not have an influence on the TCR αβ or TCR γδ subpopulations. Our study contributes to a better understanding of preterm infants' immune mechanisms, and sets the stage for further investigations.Peer reviewedFinal Published versio
Protostars and Outflows in the NGC7538 - IRS9 Cloud Core
New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1,
and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a
site of active ongoing star formation. Our observations reveal at least three
young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives
a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9
we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass
> 250 Msun. This is the center of one of the outflows and shows deep,
red-shifted self absorption in HCO+, suggesting that there is a protostar
embedded in the core, still in a phase of active accretion. This source is not
detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet
the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption
profiles observed toward the southern protostar and IRS9 predict accretion
rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at
3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other
young star in the IRS9 region has any detectable free-free emission at a level
of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the
hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for
the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of
more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap
High-resolution ab initio three-dimensional X-ray diffraction microscopy
Coherent X-ray diffraction microscopy is a method of imaging non-periodic
isolated objects at resolutions only limited, in principle, by the largest
scattering angles recorded. We demonstrate X-ray diffraction imaging with high
resolution in all three dimensions, as determined by a quantitative analysis of
the reconstructed volume images. These images are retrieved from the 3D
diffraction data using no a priori knowledge about the shape or composition of
the object, which has never before been demonstrated on a non-periodic object.
We also construct 2D images of thick objects with infinite depth of focus
(without loss of transverse spatial resolution). These methods can be used to
image biological and materials science samples at high resolution using X-ray
undulator radiation, and establishes the techniques to be used in
atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte
Coherent X-ray Diffractive Imaging; applications and limitations
The inversion of a diffraction pattern offers aberration-free
diffraction-limited 3D images without the resolution and depth-of-field
limitations of lens-based tomographic systems, the only limitation being
radiation damage. We review our experimental results, discuss the fundamental
limits of this technique and future plans.Comment: 7 pages, 8 figure
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
Recommended from our members
Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia
Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.This work was supported by grants to E.R.; Project Grant from United States Spastic Paraplegia Foundation, UK Medical Research Council Project Grant [MR/M00046X/1], Project grant from NIHR Biomedical Research Centre at Addenbrooke’s Hospital, Wellcome Trust Senior Research Fellowship in Clinical Science [082381], Project Grant from Tom Wahlig Stiftung (project 33). J.E. and P.M. are supported by a Wellcome Trust Principal Research Fellowship Grant to Margaret S. Robinson [086598]. T.M.N. was supported by an MRC PhD studentship [G0800117]. B.W. is supported by the Tom Wahlig Advanced Fellowship, the German Federal Ministry of Education and Research (BMBF, 01GQ113), the Bavarian Ministry of Education and Culture, Sciences and Arts in the framework of the Bavarian Molecular Biosystems Research Network and ForIPS, and the Interdisciplinary Centre for Clinical Research (IZKF, University Hospital of Erlangen, N3 and F3). T.R. was supported by research grant DFG GRK2162/1 of the Deutsche Forschungsgemeinschaft. The study was also supported by the European Union within the 7th European Community Framework Program for Research and Technological Development through funding for the NEUROMICS network (F5-2012-305121 to L.S. and A.D.), the E-Rare Network NEUROLIPID (01GM1408B to R.S. and ANR-13-RARE-0003-02 to G.S.), and a Marie Curie International Outgoing Fellowship (grant PIOF-GA-2012-326681 to R.S. and L.S.). This work was further supported by the US National Institutes of Health (NIH) (grant 5R01NS072248 to R.S.), the German HSP-Selbsthilfegruppe e.V. (grant to R.S. and L.S.), and grants to C.B.: Project Grant from Tom Wahlig Stiftung (project 20), grant from the Stiftung für Pathobiochemie und Molekulare Diagnostik. CIMR is supported by a Wellcome Trust Strategic Award [100140] and Equipment Grant [093026]
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
