New high resolution observations of HCO+ J=1-0, H13CN J=1-0, SO 2,2 - 1,1,
and continuum with BIMA at 3.4 mm show that the NGC7538 - IRS9 cloud core is a
site of active ongoing star formation. Our observations reveal at least three
young bipolar molecular outflows, all ~ 10,000 -- 20,000 years old. IRS9 drives
a bipolar, extreme high velocity outflow observed nearly pole on. South of IRS9
we find a cold, protostellar condensation with a size of ~ 14" x 6" with a mass
> 250 Msun. This is the center of one of the outflows and shows deep,
red-shifted self absorption in HCO+, suggesting that there is a protostar
embedded in the core, still in a phase of active accretion. This source is not
detected in the far infrared, suggesting that the luminosity < 10^4 Lsun; yet
the mass of the outflow is ~ 60 Msun. The red-shifted HCO+ self-absorption
profiles observed toward the southern protostar and IRS9 predict accretion
rates of a few times 10^-4 to 10^-3 Msun/yr. Deep VLA continuum observations at
3.6 cm show that IRS9 coincides with a faint thermal VLA source, but no other
young star in the IRS9 region has any detectable free-free emission at a level
of ~ 60 microJy at 3.6 cm. The HCO+ abundance is significantly enhanced in the
hot IRS9 outflow. A direct comparison of mass estimates from HCO+ and CO for
the well-characterized red-shifted IRS9 outflow predicts an HCO+ enhancement of
more than a factor of 30, or [HCO+/H2] >= 6 10^-8.Comment: 40 pages, 3 tables and 10 figures included; to appear in Ap