31 research outputs found

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement HH(98,y2)0.95{{H}_{\text{H}\left(98,\text{y}2\right)}}\approx 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Phenolic composition of monovarietal red wines regarding volatile phenols and its precursors

    No full text
    The aim of this study was to characterise and compare wines from different grape varieties focusing on the volatile phenols and on the respective precursor compounds, both on the free form (p-coumaric, ferulic and caffeic acids) and as tartaric esters of hydroxycinnamic acids (caftaric, coutaric and fertaric acids). Fifty-eight commercial monovarietal red wines from eight selected grape varieties were used: Cabernet Sauvignon, Syrah, Aragonez, Castelão, Touriga Franca, Touriga Nacional, Trincadeira and Vinhão (Sousão). It was found that volatile phenol precursors exist mostly as esters of tartaric acid, with caftaric acid as the most abundant cinnamate (17–111 mg/L), followed by coutaric and fertaric acids. The predominant hydroxycinnamic acid was p-coumaric acid, the highest concentrations being found in Syrah and Touriga Franca (6–7 mg/L) and the lowest in Touriga Nacional and Trincadeira (2–3 mg/L). Touriga Nacional exhibits the highest difference between bound and free forms. Malvidin-3-O-(6-p-coumaroyl)-glucoside, a potential source of p-coumaric acid, was found in most of the wines with average values varying between 1 and 5 mg/L. Twenty-two percent of the wines analysed presented levels of volatile phenols above the perception threshold. Ethylphenols were the highest in Vinhão and Trincadeira, showing an average value well above the perception threshold. The concentrations found in Cabernet Sauvignon and Syrah wines were around ten times lower than those reported in previous works. The results show relevant differences among grape varieties but the availability of the precursors in meaningful amounts may not be the only factor explaining the formation of volatile phenols in wines.info:eu-repo/semantics/publishedVersio
    corecore