283 research outputs found
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
Genomic insights into the origin and diversification of late maritime hunter-gatherers from the Chilean Patagonia.
Patagonia was the last region of the Americas reached by humans who entered the continent from Siberia ∼15,000-20,000 y ago. Despite recent genomic approaches to reconstruct the continental evolutionary history, regional characterization of ancient and modern genomes remains understudied. Exploring the genomic diversity within Patagonia is not just a valuable strategy to gain a better understanding of the history and diversification of human populations in the southernmost tip of the Americas, but it would also improve the representation of Native American diversity in global databases of human variation. Here, we present genome data from four modern populations from Central Southern Chile and Patagonia ( <i>n</i> = 61) and four ancient maritime individuals from Patagonia (∼1,000 y old). Both the modern and ancient individuals studied in this work have a greater genetic affinity with other modern Native Americans than to any non-American population, showing within South America a clear structure between major geographical regions. Native Patagonian Kawéskar and Yámana showed the highest genetic affinity with the ancient individuals, indicating genetic continuity in the region during the past 1,000 y before present, together with an important agreement between the ethnic affiliation and historical distribution of both groups. Lastly, the ancient maritime individuals were genetically equidistant to a ∼200-y-old terrestrial hunter-gatherer from Tierra del Fuego, which supports a model with an initial separation of a common ancestral group to both maritime populations from a terrestrial population, with a later diversification of the maritime groups
Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia:a Multinational Point Prevalence Study of Hospitalised Patients
Pseudornonas aeruginosa is a challenging bacterium to treat due to its intrinsic resistance to the antibiotics used most frequently in patients with community-acquired pneumonia (CAP). Data about the global burden and risk factors associated with P. aeruginosa-CAP are limited. We assessed the multinational burden and specific risk factors associated with P. aeruginosa-CAP.
We enrolled 3193 patients in 54 countries with confirmed diagnosis of CAP who underwent microbiological testing at admission. Prevalence was calculated according to the identification of P. aeruginosa. Logistic regression analysis was used to identify risk factors for antibiotic-susceptible and antibiotic-resistant P. aeruginosa-CAP.
The prevalence of P. aeruginosa and antibiotic-resistant P. aeruginosa-CAP was 4.2% and 2.0%, respectively. The rate of P. aeruginosa CAP in patients with prior infection/colonisation due to P. aeruginosa and at least one of the three independently associated chronic lung diseases (i.e. tracheostomy, bronchiectasis and/or very severe chronic obstructive pulmonary disease) was 67%. In contrast, the rate of P. aeruginosa-CAP was 2% in patients without prior P. aeruginosa infection/colonisation and none of the selected chronic lung diseases. The multinational prevalence of P. aeruginosa-CAP is low.
The risk factors identified in this study may guide healthcare professionals in deciding empirical antibiotic coverage for CAP patients
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Do Femtonewton Forces Affect Genetic Function? A Review
Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a ‘substrate tension switch’ could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo . We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41816/1/10867_2005_Article_9002.pd
- …