38 research outputs found

    Cardiac molecular pathways influenced by doxorubicin treatment in mice

    Get PDF
    Doxorubicin (DOX) is a potent chemotherapeutic with distinct cardiotoxic properties. Understanding the underlying cardiotoxic mechanisms on a molecular level would enable the early detection of cardiotoxicity and implementation of prophylactic treatment. Our goal was to map the patterns of different radiopharmaceuticals as surrogate markers of specific metabolic pathways induced by chemotherapy. Therefore, cardiac distribution of Tc-99m-sestamibi, Tc-99m-Annexin V, Tc-99m-glucaric acid and [F-18]FDG and cardiac expression of Bcl-2, caspase-3 and -8, TUNEL, HIF-1 alpha, and p53 were assessed in response to DOX exposure in mice. A total of 80 mice (64 treated, 16 controls) were evaluated. All radiopharmaceuticals showed significantly increased uptake compared to controls, with peak cardiac uptake after one (Tc-99m-Annexin V), two (Tc-99m-sestamibi), three ([F-18]FDG), or four (Tc-99m-glucaric acid) cycles of DOX. Strong correlations (p <0.01) were observed between Tc-99m-Annexin V, caspase 3 and 8, and TUNEL, and between [F-18]FDG and HIF-1 alpha. This suggests that the cardiac DOX response starts with apoptosis at low exposure levels, as indicated by Tc-99m-Annexin V and histological apoptosis markers. Late process membrane disintegration can possibly be detected by Tc-99m-sestamibi and Tc-99m-glucaric acid. [F-18]FDG signifies an early adaptive response to DOX, which can be further exploited clinically in the near future

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    The Physics of the B Factories

    Get PDF

    Relationship of promising methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients

    No full text
    It remains challenging to identify patients at risk of anthracycline-induced cardiotoxicity. To better understand the different risk-stratifying approaches, we evaluated (123)I-metaiodobenzylguanidine ((123)I-mIBG) scintigraphy and its interrelationship with conventional echocardiography, 2D strain imaging and several biomarkers. We performed (123)I-mIBG scintigraphy, conventional and strain echocardiography and biomarker (NT-proBNP, TNF-α, galectin-3, IL-6, troponin I, ST-2 and sFlt-1) assessment in 59 breast cancer survivors 1 year after anthracycline treatment. Interobserver and intermethod variability was calculated on planar and SPECT (123)I-mIBG scintigraphy, using the heart/mediastinum (H/M) ratio and washout (WO). Pearson's r and multivariate analyses were performed to identify correlations and independent predictors of (123)I-mIBG scintigraphy results. Delayed planar anterior whole-heart ROI (WH) H/M ratios and WO were the most robust (123)I-mIBG parameters. Significant correlations were observed between (123)I-mIBG parameters and several conventional echo parameters, global longitudinal and radial strain (GLS and GRS) and galectin-3. The highest Pearson's r was observed between delayed H/M ratio and GRS (Pearson's r 0.36, p = 0.01). Multivariate analysis showed that GRS was the only independent predictor of the delayed WH H/M ratio (p = 0.023). The delayed planar H/M ratio is the most robust (123)I-mIBG parameter. It correlates with several conventional echocardiographic parameters, GLS, GRS and galectin-3. Of these, only GRS predicts the H/M rati

    L1CAM in Early-Stage Type I Endometrial Cancer: Results of a Large Multicenter Evaluation

    No full text
    Contains fulltext : 124525.pdf (publisher's version ) (Closed access)BACKGROUND: Despite the excellent prognosis of Federation Internationale de Gynecologie et d'Obstetrique (FIGO) stage I, type I endometrial cancers, a substantial number of patients experience recurrence and die from this disease. We analyzed the value of immunohistochemical L1CAM determination to predict clinical outcome. METHODS: We conducted a retrospective multicenter cohort study to determine expression of L1CAM by immunohistochemistry in 1021 endometrial cancer specimens. The Kaplan-Meier method and Cox proportional hazard model were applied for survival and multivariable analyses. A machine-learning approach was used to validate variables for predicting recurrence and death. RESULTS: Of 1021 included cancers, 17.7% were rated L1CAM-positive. Of these L1CAM-positive cancers, 51.4% recurred during follow-up compared with 2.9% L1CAM-negative cancers. Patients bearing L1CAM-positive cancers had poorer disease-free and overall survival (two-sided Log-rank P < .001). Multivariable analyses revealed an increase in the likelihood of recurrence (hazard ratio [HR] = 16.33; 95% confidence interval [CI] = 10.55 to 25.28) and death (HR = 15.01; 95% CI = 9.28 to 24.26). In the L1CAM-negative cancers FIGO stage I subdivision, grading and risk assessment were irrelevant for predicting disease-free and overall survival. The prognostic relevance of these parameters was related strictly to L1CAM positivity. A classification and regression decision tree (CRT)identified L1CAM as the best variable for predicting recurrence (sensitivity = 0.74; specificity = 0.91) and death (sensitivity = 0.77; specificity = 0.89). CONCLUSIONS: To our knowledge, L1CAM has been shown to be the best-ever published prognostic factor in FIGO stage I, type I endometrial cancers and shows clear superiority over the standardly used multifactor risk score. L1CAM expression in type I cancers indicates the need for adjuvant treatment. This adhesion molecule might serve as a treatment target for the fully humanized anti-L1CAM antibody currently under development for clinical use
    corecore