265 research outputs found

    A spatially-VSL gravity model with 1-PN limit of GRT

    Full text link
    A scalar gravity model is developed according the 'geometric conventionalist' approach introduced by Poincare (Einstein 1921, Poincare 1905, Reichenbach 1957, Gruenbaum1973). In principle this approach allows an alternative interpretation and formulation of General Relativity Theory (GRT), with distinct i) physical congruence standard, and ii) gravitation dynamics according Hamilton-Lagrange mechanics, while iii) retaining empirical indistinguishability with GRT. In this scalar model the congruence standards have been expressed as gravitationally modified Lorentz Transformations (Broekaert 2002). The first type of these transformations relate quantities observed by gravitationally 'affected' (natural geometry) and 'unaffected' (coordinate geometry) observers and explicitly reveal a spatially variable speed of light (VSL). The second type shunts the unaffected perspective and relates affected observers, recovering i) the invariance of the locally observed velocity of light, and ii) the local Minkowski metric (Broekaert 2003). In the case of a static gravitation field the model retrieves the phenomenology implied by the Schwarzschild metric. The case with proper source kinematics is now described by introduction of a 'sweep velocity' field w: The model then provides a hamiltonian description for particles and photons in full accordance with the first Post-Newtonian approximation of GRT (Weinberg 1972, Will 1993).Comment: v1: 11 pages, GR17 conf. paper, Dublin 2004, v2: WEP issue solved, section on acceleration transformation added, text improved, more references, same results, v3: typos removed, footnotes, added and references updated, v4: appendix added, improved tex

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    The structure of mercantile communities in the Roman world : how open were Roman trade networks?

    Get PDF

    Episodic Source Memory over Distribution by Quantum-Like Dynamics – A Model Exploration

    Get PDF
    In source memory studies, a decision-maker is concerned with identifying the context in which a given episodic experience occurred. A common paradigm for studying source memory is the ‘three-list’ experimental paradigm, where a subject studies three lists of words and is later asked whether a given word appeared on one or more of the studied lists. Surprisingly, the sum total of the acceptance probabilities generated by asking for the source of a word separately for each list (‘list 1?’, ‘list 2?’, ‘list 3?’) exceeds the acceptance probability generated by asking whether that word occurred on the union of the lists (‘list 1 or 2 or 3?’). The episodic memory for a given word therefore appears over distributed on the disjoint contexts of the lists. A quantum episodic memory model [QEM] was proposed by Brainerd, Wang and Reyna [8] to explain this type of result. In this paper, we apply a Hamiltonian dynamical extension of QEM for over distribution of source memory. The Hamiltonian operators are simultaneously driven by parameters for re-allocation of gist-based and verbatim-based acceptance support as subjects are exposed to the cue word in the first temporal stage, and are attenuated for description-dependence by the querying probe in the second temporal stage. Overall, the model predicts well the choice proportions in both separate list and union list queries and the over distribution effect, suggesting that a Hamiltonian dynamics for QEM can provide a good account of the acceptance processes involved in episodic memory tasks

    Prospects in Analytical Atomic Spectrometry

    Full text link
    Tendencies in five main branches of atomic spectrometry (absorption, emission, mass, fluorescence and ionization spectrometry) are considered. The first three techniques are the most widespread and universal, with the best sensitivity attributed to atomic mass spectrometry. In the direct elemental analysis of solid samples, the leading roles are now conquered by laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively-coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Prospects for analytical instrumentation are seen in higher productivity, portability, miniaturization, incorporation of advanced software, automated sample preparation and transition to the multifunctional modular architecture. Steady progress and growth in applications of plasma- and laser-based methods are observed. An interest towards the absolute (standardless) analysis has revived, particularly in the emission spectrometry.Comment: Proofread copy with an added full reference list of 279 citations. A pdf version of the final published review may be requested from Alexander Bol'shakov <[email protected]
    • 

    corecore