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Abstract. In source memory studies, a decision-maker is concerned
with identifying the context in which a given episodic experience oc-
curred. A common paradigm for studying source memory is the ‘three-
list’ experimental paradigm, where a subject studies three lists of words
and is later asked whether a given word appeared on one or more of
the studied lists. Surprisingly, the sum total of the acceptance proba-
bilities generated by asking for the source of a word separately for each
list (‘list 1?’, ‘list 2?’, ‘list 3?’) exceeds the acceptance probability gen-
erated by asking whether that word occurred on the union of the lists
(‘list 1 or 2 or 3?’). The episodic memory for a given word therefore
appears over distributed on the disjoint contexts of the lists. A quantum
episodic memory model [QEM] was proposed by Brainerd, Wang and
Reyna (2013) to explain this type of result. In this paper, we apply a
Hamiltonian dynamical extension of QEM for over distribution of source
memory. The Hamiltonian operators are simultaneously driven by pa-
rameters for re-allocation of gist-based and verbatim-based acceptance
support as subjects are exposed to the cue word in the first temporal
stage, and are attenuated for description-dependence by the querying
probe in the second temporal stage. Overall, the model predicts well
the choice proportions in both separate list and union list queries and
the over distribution effect, suggesting that a Hamiltonian dynamics for
QEM can provide a good account of the acceptance processes involved
in episodic memory tasks.

Keywords: Recognition memory, over distribution, quantum modeling,
word list, verbatim, gist

1 Familiarity and recollection, verbatim and gist

Recognition memory models predict judgments of ‘prior occurrence of an event’.
In recognition, Mandler distinguished a familiarity process and a retrieval - or
recollection - process that would evolve separately but also additively [21]. The
familiarity of a memory would relate to an ‘intra event organizational integrative
process’, while retrieval relates to an ‘inter event elaborative process’. Extend-
ing this dual process modeling work, by Tulving [26] and Jacoby [17], a ‘conjoint
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recognition’ model was developed by Brainerd, Reyna and Mojardin [4] which
provides separate parameters for the entangled processes of identity judgement,
similarity judgment and response bias. Their model implements verbatim and
gist dimensions to memories. Verbatim traces hold the detailed contextual fea-
tures of a past event, while gist traces hold its semantic details. In recognition
tasks we would access verbatim and gist trace in parallel. The verbatim trace of
a verbal cue handles it surface content like orthography and phonology for words
with its contextual features like in this case, colour of back ground and text font.
The verbal cue’s gist trace will encode relational content like semantic content
for words, also with its contextual features. This development recently received
a quantum formalisation for its property of superposed states to cope with over

distribution in memory tests [8, 9, 14]. In specifically designed expermental tests
it appeared episodic memory of a given word is over distributed on the disjoint
contexts of the lists, letting the acceptance probability behave as a subadditive

function [6, 9].
Quantum-like memory models The Quantum Episodic Memory model (QEM)
was proposed by Brainerd, Wang and Reyna (2013). It assumes a Hilbert space
representation in which verbatim, gist, and non-related components are orthog-
onal, and in which recognition engages the gist trace in target memories as well.
We will provide ample detail about this model in the next section, since our dy-
namical extension is implemented in essentially the same structural setting. QEM
was extended to generalized-QEM (GQEM) by Trueblood and Hemmer to model
for incompatible features of gist, verbatim and non-related traces [25]. Subjacent
is the idea that these features are serially processed, and that gist precedes verba-
tim since it is processed faster. Independently, Denolf and Lambert-Mogiliansky
have considered the accessing of gist and verbatim as incompatible process fea-
tures. This aspect is implemented in an intrinsically quantum-like manner in
their complementarity-based model for Complementary Memory Types (CMT)
[15, 16, 20]. We previously developed a Hamiltonian dynamical extension of QEM
for item memory tasks [11]. The dynamical formalism allows to describe time
development of the acceptance decision based on gist, verbatim and non-related
traces. Finally, also a semantic network approach by Bruza, Kitto, Nelson, and
McEvoy [23] was developed in which the target word is adjacent to its associated
terms and the network is in a quantum superposition state of either complete
activation or non-activation (see also [12]).
We note that dynamical approaches to quantum-like models have been proposed
previously, e.g. in decision theory by Busemeyer and Bruza [14], Pothos and
Busemeyer [24], Mart́ınez-Mart́ınez [22] and by Yearsley and Pothos [28], in cog-
nition by Aerts, Broekaert and Smets [2], in perception theory by Atmanspacher
and Filk [3].

2 True memory, false memory, over distributed memory.

In the conjoint process dissociation model (CPD) a sufficient parametrisation
is present to capture the four distinct response patterns of true, false, over dis-
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tributed and forgotten memories of the three-list paradigm. The precise identifi-
cation of the types of memories for a given target requires a composite outcome
for the acceptance to three lists at once (see fig. and table 1 ). For instance,
should a participant report “the word appeared on L1, on L2 but not on L3,”
when the cue word came from list L2 then this participant clearly showed a case
of memory over distribution. If however that same answer had been given for a
cue coming from list L3 then this participant showed a case of false memory.
The participant is however well informed at the start that the word lists do
not overlap. It makes therefor no sense to ask for an answer to a conjunctive
composition query probe at one instance: multiple-yes answers would be absent
and therefor no cases of over distribution could be produced. A quantum based
model for the conjunction of queries moreover requires a procedure specification
for its formal representation, since measurement outcomes in quantum mod-
els are sensitive to ordering of the measurement operators for non-compatible
questions [1, 14, 24, 27]. While the projectors for list membership, Eqs. 6, are
commutative the dynamical process between two measurements will void that
order invariance, as we will see in the next section. The dynamical process im-
plies that the Hamiltonian-QEM predicts different acceptance probabilities for
different query orderings, e.g. p(Li? ◦ Lj?|Li) 6= p(Lj? ◦ Li?|Li). It is therefor
not possible in Hamiltonian-QEM to define a unique expression for expressions
like p(¬Li?∩Lj?∩Lk?|Li) (cfr [8]) without additional information on the order
of querying.

Li? Lj? Lk? | Li

yes yes yes → over distribution
yes yes no → over distribution
yes no yes → over distribution
yes no no → true memory
no yes yes → false memory
no yes no → false memory
no no yes → false memory
no no no → forgotten

Fig. 1. Logic of false memory, true memory and over distribution in the three list
paradigm for source memory, for a target which is a studied word from list Li. Indices
[i, j, k] are permutations of [1,2,3]. For a distractor, which is an unstudied word from
L4, all response triplets are erroneous memories, except the triple ‘no’ which is a correct
no-memory evaluation.

In the three list experimental paradigm the query probes are kept separated –
‘did the word appear on List 1’ (L1?), ‘did the word appear on List 2’ (L2?), ‘did
the word appear on List 3’ (L2?) and the disjunctive probe ‘did the word appear
on one of the lists’ (L123?) – and are randomised between other acceptance tasks
for other words [8, 16, 18, 25].
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From a classical set theoretic perspective we can relate the acceptance probability
for the disjunctive probe with the acceptance probabilities of the single probes;

|S(L1 ∪ L2 ∪ L3?)| =
∑

i |S(Li?)| −
∑

i<j |S(Li ∩ Lj?)|+ |S(L1 ∩ L2 ∩ L3?)| (1)

(for a word from a given set Lk). Then we define the unpacking factor UF as
the ratio of number of acceptance responses for the separate queries per list over
the number of cases of the query for the joined lists :

UF (k) =

∑

i |S(Li)|
|S(L1 ∪ L2 ∪ L3?)|

(2)

In terms of summed acceptance probabilities and taking into account classical
set relation, Eq. (1), and some algebra, the interpretation of the unpacking factor
is apparent;

UF (k) =
p(L1?|Lk) + p(L2?|Lk) + p(L3?|Lk)

p(L123?|Lk)

= 1 +
p(L1 ∩ L2 ∩ ¬L3?|Lk) + p(¬L1 ∩ L2 ∩ L3?|Lk) + p(L1 ∩ ¬L2 ∩ L3?|Lk)

p(L123?|Lk)

+2
p(L1 ∩ L2 ∩ L3?|Lk)

p(L123?|Lk)
(3)

For every index value k of the target’s list, the excess value of UF above 1 is
caused by three over distribution terms of which the ‘always accept’ term is
double weighted, and one false memory term of the type ‘accept on all lists

except the true source’. For example, when k = 1, the term p(¬L1∩L2∩L3?|L1)
p(L123?|L1)

relates to the case a target from L1 was not accepted on that list while it was
accepted both on L2 and L3, constituting a false memory contribution to UF .
Since the lists in the experimental design are disjoint, according to classical logic
the right hand side is equal to 1. For experimental choice proportions however
the unpacking factor shows to be significantly larger than 1 [8]. Modulo the fact
that along three terms for over distribution the unpacking factor always mixes
in one term of false memory as well, we will still use the unpacking factor as a
measure for over distribution, besides its correct measure for subadditivity.1

3 The Hamiltonian based QEM model.

In essence the Hamiltonian based QEM model describes in two subsequent tem-
poral stages how the belief state of the participants evolves through the exper-
imental paradigm. This change of the belief state is described by two distinct
Schrödinger evolutions. In the first stage the participant is presented with a cue

1 In principle contributions of false memories and over distributions could be fully
separated if one would measure the acceptance probabilities for disjunctions of all
disjunctive list pairs as well.
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originating from one of the four lists - three of them with targets, one with
distractors. First, the participant processes this incoming information to change
her initial ‘uniform’ belief state into a state informed by the presented cue and
her memory. Subsequently this state of belief is then further evolved due to the
processing of the information of the probe. The information of the probe allows
for a response bias or description-dependence. We expect the latter evolution to
be an attenuation of the first stage recognition phase.
State vectors. In line with Brainerd, Wang and Reyna’s development of QEM,
the state vector is expressed on the orthogonal basis (V1, V2, V3, G,N). The model
thus provides a dedicated dimension for verbatim support for each list, and a
dimension for gist support shared for all lists. The last dimension is dedicated to
support for non-related items or distractors. In our dynamical development of
QEM each state vector is modulated according the cue and probe combination
to which the subject is exposed

Ψprobe|cue(t) = [ψp|cV1
(t), ψp|cV2

(t), ψp|cV3
(t), ψp|cG(t), ψp|cN (t)]τ ,

amounting to sixteen distinct states in the present experimental paradigm.

The initial state vector. In the basis (V1, V2, V3, G,N), the generalized
initial state vector is expressed as

Ψ0(g) =
[

√

(1− g2)/6,
√

(1− g2)/6,
√

(1− g2)/6, g/
√
2, 1/

√
2
]τ

(4)

where we restrict the parameter g ∈ [−1, 1]. This initial belief state of the subject
reflects to certain extent the fact - of which the subject is informed - that in this
experiment half of the cues are non-studied, and half of them come from the three
studied lists (p. 419, [7]). This form also implements the idea that the subject
at the start has a latent tendency for acceptance of the cues. This form of the
initial state expresses that a cue from a studied list elicits on average (1− g2)/6
acceptance probability from verbatim trace and g2/2 acceptance probability from
the gist trace.2 The parameter g therefor indicates the preponderance of gist in
the initial state for a given cue. It should be noticed however that the initial
state itself is not measured on. In the Hamiltonian model a dynamical evolution
transforms the initial belief state till the point of measurement. Our present
assessment of the initial component amplitudes therefore only concern a latent
tendency. We will at present fix the initial state to correspond mathematically

2 Without taking into account of dynamics for the effect of cue or probe, but still
applying the measurement projections Eqs (6), the amount of gist g in the initial
state shows a latent tendency for overdistribution

p0(L1) + p0(L2) + p0(L3) + p0(N) = 1 + g2

with p0(N) = 1/2. Clearly the experimental description ‘half of the cues are N , the
other half originate from the lists’, cannot be implemented exactely due to overdis-
tribution.
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to equal weighting of acceptance support by verbatim trace and by gist trace for
the three studied lists. The initial state then reads, with g = 0.5 in Eq.(5),

Ψ0 =
[

1/2
√
2, 1/2

√
2, 1/2

√
2, 1/2

√
2, 1/

√
2
]τ

(5)

Measurement projectors The subject’s response to the probes Li?, or
L123? for a given cue of Lj , are obtained by applying the measurement operators
on the final state Ψprobe|cue. The measurement operators are projector matrices
which select the components of the final outcome vectors for the specific response.
The projector for e.g. L1? must select both the dedicated verbatim amplitude
ψL1|cV1

and the gist component ψL1|cG
. In (V1, V2, V3, G,N) ordered Hilbert

space the corresponding projector ML1? will thus collapse the outcome state to
a subspace spanned on the (V1, G) basis, and is implemented by a matrix with
diagonal elements (1,0,0,1,0) and 0 otherwise. All projectors for the three list
paradigm are implemented accordingly:

ML1 ?=





















1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0





















,ML2 ?=





















0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0





















,ML3 ?=





















0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0





















,ML123 ?=





















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0





















(6)

We notice the acceptance projectors commute, but are not orthogonal as they
all include the gist component in their projective subspace;

[

PLi?, PLj ?

]

= 0, PLi?.PLj ? 6= 0 (i 6= j)

Trueblood and Hemmer [25], and Denolf and Lambert-Mogliansky [16] point
out QEM’s orthogonality of verbatim, gist and non-related features need not
necessarily be retained (cfr model specifications in Section 1). In our dynamical
extension of QEM a query probe engenders its proper dynamics, therefor re-
peated application of projectors, without intermediate evolution, will not occur.
Acceptance probabilities. In quantum-like models probabilities are given by
the squared length of the projected outcome vectors. Using the projector oper-
ators, eqs (6), the resulting acceptance probabilities for a given probe Li? after
a given cue Lj , are explicitly given by the expressions:

p(Li?|Lj) =
∣

∣

∣

∣

ψLi?|Lj Vi

∣

∣

∣

∣

2

+
∣

∣

∣
ψLi?|LjG

∣

∣

∣

2

, (7)

p(L123?|Lj) =
∣

∣

∣

∣

ψL123?|Lj V1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

ψL123?|Lj V2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

ψL123?|Lj V3

∣

∣

∣

∣

2

+
∣

∣

∣
ψL123?|LjG

∣

∣

∣

2

(8)

Notice that the probe index i runs from 1 to 3, while the cue index j runs from
1 to 4 since it includes the non-studied list L4.
With the explicit expressions of the acceptance probabilities we obtain, using
some algebra, the potential for super-additivity in the Hamiltonian-QEM model
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by means of the unpacking factor, for a given cue c;

UF (c) = 1 +

∣

∣

∣

∣

∣

ψL1?|cV1

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

ψL123?|cV1

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

ψL1?|cV2

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

ψL123?|cV2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

ψL1?|cV3

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

ψL123?|cV3

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

ψL123?|cV1

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

ψL123?|cV2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

ψL123?|cV3

∣

∣

∣

∣

∣

2

+|ψL123?|cG
|2

+
|ψL1?|cG

|2+|ψL2?|cG
|2+|ψL3?|cG

|2−|ψL123?|cG
|2

∣

∣

∣

∣

∣

ψL123?|cV1

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

ψL123?|cV2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

ψL123?|cV3

∣

∣

∣

∣

∣

2

+|ψL123?|cG
|2

(9)

From which follows that - given the positive gist balance in the second fraction -
most often the Hamiltonian-QEM model will predict subadditivity in the three
list paradigm. However, like in the Hamiltonian QEM model for the item false

memory paradigm of Broekaert & Busemeyer [11], we find the model can in
principle also account for cases that satisfy the additivity of disjoint sub-events,
or violate it in super-additive manner.
Hamiltonians. The dynamical evolution of the state vectors is determined by
the Hamiltonian operators. The Hamiltonian reflects the cognitive processing
which is engendered by the information in the word cue - differently for a cue
from the studied lists or the unrelated list. In the present three-list paradigm
these operators are constructed along four transports - or re-allocations - be-
tween components of the belief state; i) between gist-based component and non-
cue verbatim-based component (G ↔ V¬i), ii) between gist-based component
and non-related component (G ↔ N), iii) between cue verbatim-based compo-
nent and non-cue verbatim-based component (Vi ↔ V¬i), and iv) between cue
verbatim-based component and non-related component (Vi ↔ N). The Hamil-
tonians are constructed by combining the off-diagonal parametrised Hadamard
gates of each transport [11]. The Hamiltonian parameter γ controls the transport
of acceptance probability amplitude from non-cue verbatim-based components
towards the gist-based component, or back. Similarly γ′ regulates transport of
acceptance probability amplitude of the non-related component from or towards
the gist-based component. Precisely the strength γ′ of this dynamic will be made
use of to adjust for the four distinct types of word cues ‘high frequency & con-
crete’ (HFC), ‘high frequency & abstract’ (HFA), ‘low frequency & concrete’
(LFC), ‘low frequency & abstract’ (LFA). Brainerd and Reyna suggest abstract
words have weaker verbatim traces than concrete words and low-frequency words
have weaker verbatim traces than high-frequency words [5, 7, 8]. A tendency
which suggests gist based transport from the non-related component to vary —
namely {γ′HFC , γ′HFA, γ′LFC , γ′LFA} — for these distinct types of word cues.
The parameter ν controls transport of acceptance probability amplitude between
non-cue verbatim-based components and the cue verbatim-based component.
Similarly ν′ controls the transport of the acceptance probability amplitude of
the non-related component from or towards the cue verbatim-based component.
In our present development we demonstrate the parameters fulfil their intended
transport: the parameters γ and γ′ for gist-based transport, and ν and ν′ for
cue verbatim-based transport. We could have implemented an effect of list or-
der by distinguishing for each list the transports of the non-related component
(γ′i,Abs.type, ν

′
i) for forgetfulness variation per list, or by distinguishing the trans-
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ports of the target verbatim-based component (γi, νi) for gist-verbatim diversi-
fied acceptance variation per list.
Diminishing the strength of transports, by quenching the driving parameters,
will let outcome acceptance beliefs tend to concur with the acceptance beliefs
inherent to the initial state.
First temporal stage. The presentation of the word cue starts the memory
process of recollection and familiarity in the subject. For cues from studied lists
the hamiltonians H1c, H2c and H3c engage verbatim-based and gist-based belief.
For non-studied cues from list 4, the hamiltonian H4c engages for the non-related
belief.

H1c(ν, ν
′, γ, γ′) =













1 ν ν 0 ν′

ν −1 0 γ 0

ν 0 −1 γ 0

0 γ γ 1 γ′

ν′ 0 0 γ′ −1













, H2c(ν, ν
′, γ, γ′) =













−1 ν 0 γ 0

ν 1 ν 0 ν′

0 ν −1 γ 0

γ 0 γ 1 γ′

0 ν′ 0 γ′ −1













,(10)

H3c(ν, ν
′, γ, γ′) =





















−1 0 ν γ 0

0 −1 ν γ 0

ν ν 1 0 ν′

γ γ 0 1 γ′

0 0 ν′ γ′ −1





















, H4c(ν
′, γ′) =





















−1 0 0 0 ν′

0 −1 0 0 ν′

0 0 −1 0 ν′

0 0 0 −1 γ′

ν′ ν′ ν′ γ′ 1





















. (11)

Second temporal stage. The presentation of the probe starts the subsequent
decision process in the subject. The outcome of the cue processing and the sub-
sequent probe can be confirmatory or dissonant. When probing for a studied
list, the Hamiltonian Hip for a probe Li? is equated to the Hamiltonian Hic for
processing a cue from Li, in which the driving parameters are now attenuated
by a factor κ. When probing for the union of lists, the dedicated Hamiltonian
H123p for probe L123? is equated to the sum of the separate Hamiltonians Hip

for processing of studied cues from Li, in which the driving parameters are again
attenuated by the factor κ. This separable construction of the Hamiltonian re-
flects the cognitive processing of the union list consists of the parallel processing
of membership to the three separate lists, and results in the summed atten-
uated transport between the non-related component and equally all verbatim
components and the gist component.

H1p(ν, ν
′, γ, γ′, κ) = H1c(κν, κν

′, κγ, κγ′) (12)

H2p(ν, ν
′, γ, γ′, κ) = H2c(κν, κν

′, κγ, κγ′) (13)

H3p(ν, ν
′, γ, γ′, κ) = H3c(κν, κν

′, κγ, κγ′) (14)

H123p(ν, ν
′, γ, γ′, κ) = H1p +H2p +H3p (15)

Parameters. In recapitulation; the Hamiltonian QEM model uses 5 parameters
{µ, µ′, γ, γ′, κ} to describe the dynamics of the subject’s belief state to evolve
from her prior partially informed expectation to the final decision of acceptance
of the cue, accounting for 16 acceptance probabilities p(Li?|Lj). In Section(4),
we fitted the parameters for the four distinct types of frequency and concreteness
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of the cue words HFC, HFA, LFC and LFA. Between these sets we only changed
the gist transport parameter γ′ (G↔ N) in the Hamiltonians, respectively γ′HFA,
γ′HFA, γ

′
LFC and γ′LFA, and otherwise maintained the same Hamiltonian drivers

γ, ν, ν′ and κ. In total therefor 8 parameters are needed to predict the 64 values
of the acceptance probabilities.
Unitary time evolution. In quantum-like models the Hamiltonian is the oper-
ator for infinitesimal time change of the belief state. The operator U(t) for time
propagation over a time range t is given by

U(t) = e−iHt (16)

The fully evolved belief state - a solution of the Schrödinger equation - is ob-
tained by applying the unitary time operator U(t) to the initial state. An inherent
feature with Hamiltonian quantum models is the appearance of oscillations of
probability over time. In quantum mechanics, finite dimensional and energeti-
cally closed systems are always periodical. Therefor the initial belief state will
re-occur after the proper time period of the system. In previous work we have
argued a third temporal stage, closing the experimental paradigm, should im-
plicitly be supposed in which all driving parameters are set equal to zero [11].
The time of measurement t is taken equal to π

2 for each stage [14].3 The final
outcome state vector is thus obtained by concatenating both propagators on the
initial state, Eq. (5),

Ψp|c = e−iHp?
π
2 e−iHc

π
2 Ψ0 (17)

The processing of cue c in the first stage occurs till t = π
2 , the processing of

probe p? in the second stage takes another time range of π2 . The time evolution
of the acceptance probabilities from initial state processing of cue and processing
of probe is shown in figure 2.

4 Data and prediction

We use the experimental 3-list data (N=70), reported in Brainerd, Wang and
Reyna (Table 2, [8]). The CPD model based ‘bias-correction’ of the acceptance
probabilities has been omitted and appear in Table 1. The raw data set was
provided by dr. Charles Brainerd. This same data set is used in the CMT model
development by Denolf and Lambert-Mogiliansky [15, 16], (their Table1 shows
some typos for L2 cues in the HFA, LFC and LFA set). We optimised the
RMSE for 64 data points and Hamiltonian-QEM predictions using 8 param-
eters {µ, µ′, γ, γ′HFC , γ

′
HFA, γ

′
LFC , γ

′
LFA, κ}. Using a 38 grid in parameter space

the best fit produced RMSE=0.054737, for the parameter values in Table 2.

3 The Hamiltonian parameters are dependent on the choice of measurement time.
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HFC HFA LFC LFA

Obs. L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

L1? 0.52 0.31 0.30 0.15 0.52 0.32 0.40 0.25 0.59 0.31 0.34 0.11 0.58 0.44 0.43 0.19
L2? 0.33 0.35 0.43 0.17 0.36 0.54 0.44 0.24 0.46 0.46 0.35 0.11 0.61 0.53 0.58 0.21
L3? 0.38 0.35 0.42 0.21 0.37 0.38 0.48 0.24 0.41 0.34 0.49 0.13 0.53 0.38 0.52 0.17
L123? 0.56 0.54 0.60 0.22 0.54 0.64 0.53 0.26 0.64 0.49 0.56 0.13 0.66 0.61 0.59 0.20
UF 2.20 1.89 1.91 2.45 2.32 1.96 2.49 2.83 2.31 2.31 2.10 2.77 2.59 2.19 2.61 2.86
Pred. L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

L1? 0.45 0.36 0.36 0.20 0.49 0.39 0.39 0.19 0.49 0.39 0.39 0.19 0.57 0.47 0.47 0.18
L2? 0.36 0.45 0.36 0.20 0.39 0.49 0.39 0.19 0.39 0.49 0.39 0.19 0.47 0.57 0.47 0.18
L3? 0.36 0.36 0.45 0.20 0.39 0.39 0.49 0.19 0.39 0.39 0.49 0.19 0.47 0.47 0.57 0.18
L123? 0.53 0.53 0.53 0.23 0.57 0.57 0.57 0.22 0.57 0.57 0.57 0.22 0.64 0.64 0.64 0.21
UF 2.18 2.18 2.18 2.70 2.24 2.24 2.24 2.65 2.24 2.24 2.24 2.64 2.35 2.35 2.35 2.52

Table 1. Observed acceptance ratios and unpacking factors, partitioned by cue type,
high frequency & concrete (HFC), high frequency & abstract (HFA), low frequency &
concrete (LFC), low frequency & abstract (LFA). N=70. Data set from Table 2, [8].
Predicted acceptance probabilities and unpacking factors from the Hamiltonian-QEM
model, RMSE= 0.054737.

ν ν′ γ γ′

HFC γ′

HFA γ′

LFC γ′

LFA κ

-0.6885 0.40345 0.30631 -0.0099825 0.022938 0.027313 0.10107 -0.45978

Table 2. Best-fit parameters for Hamiltonian-QEM (t1 = t2 = π/2).
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5 Discussion

We explored the over distribution predictions of a dynamical extension of Quan-
tum Episodic Memory model by Brainerd, Wang, Reyna and Nakamura (2013,
2015) in the 3-list paradigm. The dynamic processing of the initial belief state in
our Hamiltonian-QEM results, over time, in outcome states with adequate values
of the acceptance probabilities and the unpacking factor for over distribution of
memories. The model further predicts systematic higher acceptance probabilities
of targets to their proper source list, p(Li?|Li) > p(Lj?|Li) for (j 6= i), which
is curiously not consistently observed in the experimental data set (N=70). The
model relies on four types of transport embedded in the Hamiltonians; the pa-
rameters γ and γ′ regulate transport affecting the gist-based component, and
the parameters ν and ν′ regulate transport affecting the verbatim-based com-
ponents. The Hamiltonians of the first stage cue recognition phase receive the
attenuation parameter κ in the second probe response stage.
The Hamiltonian-QEM model succeeds in a qualitatively good fit with 8 dynam-
ical parameters for the 64 data points of the experimental data set Brainerd et
al. [8]. Beyond this exploratory test of the Hamiltonian-QEM for source mem-
ory, the model must still be submitted to a comparative statistical test with
recent generalisations and modifications of the QEM model, in particular the
Generalized-QEM model by Trueblood and Hemmer [25] and Complementary
Memory Types model by Denolf and Lambert-Mogiliansky [15, 16, 20].
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Fig. 2. Optimized two-stage temporal evolution of the acceptance probabilities
p(Li?|Lj) according the Hamiltonian-QEM model with separable H123p for querying
the joint-list, and with equal latent gist and verbatim support in the initial state
(g = 0.5).
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