79 research outputs found
Tricuspid Valve Replacement in a Patient with a Leadless Cardiac Pacemaker: Current Guidelines and Recommendations for Perioperative Management
Leadless cardiac pacemakers were developed to reduce complications associated with conventional transvenous pacemakers. While this technology is still relatively new, devices are increasingly being implanted. The perioperative management of patients with these devices has been underreported; we thus seek to add to the limited body of knowledge of perioperative management of patients with leadless cardiac pacemakers. An elderly female patient with a Micra VR transcatheter pacing system leadless cardiac pacemaker placed for tachycardia-bradycardia syndrome with intermittent complete heart block was scheduled for elective tricuspid valve replacement for severe tricuspid regurgitation. Pacemaker interrogation was performed several hours prior to the scheduled surgery based on the electrophysiologist's availability; the device was kept in its programmed VVIR mode, and the base rate was increased from 60 to 80 beats per minute in anticipation of the upcoming surgery. Upon preoperative evaluation, the anesthesiologist asked that the electrophysiology team be placed on standby intraoperatively due to the concern that either oversensing in the setting of pacemaker dependence and/or undesirable tachycardia from rate-responsive pacing could occur. The surgeon used monopolar electrocautery for the duration of the cardiac surgery. Despite the patient having evidence of pacemaker dependence in the intensive care unit preoperatively, no electromagnetic interference leading to oversensing nor rate modulation was detected during intraoperative electrocardiographic and intraarterial invasive monitoring. Evidence-based guidelines regarding perioperative management specifically of leadless cardiac pacemakers do not exist. As these devices become more prevalent, further evaluation will be paramount to determine whether existing guidelines for perioperative management of conventional transvenous pacemakers apply
Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness
Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.Publisher PDFPeer reviewe
ĐŃĐ°ĐşŃикООŃионŃиŃОваннОо ОйŃŃонио â Đ°ĐşŃивнО ŃоаНиСŃĐľĐźĐ°Ń ŃŃППа СнаниК
ĐĐĐĐĐŚĐĐĐĄĐĐРУЧĐĐĐĐŤĐ ĐĐĐĐĐĐĐĐĐŻĐĐĐ ĐĐĐĐĐĐĐĐ ĐĐĐĐĐŚĐĐĐĄĐĐĐХТУĐĐĐТЍ ĐĐĐĐĐŚĐĐĐĄĐĐĐĽ УЧĐĐĐĐŤĐĽ ĐĐĐĐĐĐĐĐĐĐĐ ĐĐТĐĐĐ-ĐĐ ĐĐĐТĐĐ ĐĐĐĐĐĐĐ ĐĐУЧĐĐĐĐĐĐĐĐĐĐ ĐĐ ĐĐĐĐ ĐТĐĐĐĐŻ ĐĄĐĐĐĄĐĐĐĐХТ
A data set from flash X-ray imaging of carboxysomes
Citation: Hantke, M. F., Hasse, D., Ekeberg, T., John, K., Svenda, M., Loh, D., . . . Maia, F. R. N. C. (2016). A data set from flash X-ray imaging of carboxysomes. Scientific Data, 3. doi:10.1038/sdata.2016.61Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115Âą26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere
A data set from flash X-ray imaging of carboxysomes
Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115Âą26ânm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12âmin. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere
The Developing Human Connectome Project neonatal data release
The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed
Recommended from our members
Femtosecond Operation of the LCLS for User Experiments
In addition to its normal operation at 250pC, the LCLS has operated with 20pC bunches delivering X-ray beams to users with energies between 800eV and 2 keV and with bunch lengths below 10 fs FWHM. A bunch arrival time monitor and timing transmission system provide users with sub 50 fs synchronization between a laser and the X-rays for pump/probe experiments. We describe the performance and operational experience of the LCLS for short bunch experiments
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
- âŚ