132 research outputs found

    Using natural means to reduce surface transport noise during propagation outdoors

    Get PDF
    This paper reviews ways of reducing surface transport noise by natural means. The noise abatement solutions of interest can be easily (visually) incorporated in the landscape or help with greening the (sub)urban environment. They include vegetated surfaces (applied to faces or tops of noise walls and on building façades and roofs ), caged piles of stones (gabions), vegetation belts (tree belts, shrub zones and hedges), earth berms and various ways of exploiting ground-surface-related effects. The ideas presented in this overview have been tested in the laboratory and/or numerically evaluated in order to assess or enhance the noise abatement they could provide. Some in-situ experiments are discussed as well. When well-designed, such natural devices have the potential to abate surface transport noise, possibly by complementing and sometimes improving common (non-green) noise reducing devices or measures. Their applicability strongly depends on the available space reserved for the noise abatement and the receiver position

    Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (SAGE) I: Overview and Initial Results

    Get PDF
    We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope in order to survey the agents of a galaxy's evolution (SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies of dust processes in the ISM. SAGE's point source sensitivity enables a complete census of newly formed stars with masses >3 solar masses that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by three months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are non-proprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data with a special focus on the N79 and N83 region. The SAGE epoch 1 point source catalog has ~4 million sources. The point source counts are highest for the IRAC 3.6 microns band and decrease dramatically towards longer wavelengths consistent with the fact that stars dominate the point source catalogs and that the dusty objects, e.g. young stellar objects and dusty evolved stars that detected at the longer wavelengths, are rare in comparison. We outline a strategy for identifying foreground MW stars, that may comprise as much as 18% of the source list, and background galaxies, that may comprise ~12% of the source list.Comment: Accepted by the Astronomical Journa

    Spitzer survey of the Large Magellanic Cloud, surveying the agents of a galaxy's evolution (SAGE). IV. Dust properties in the interstellar medium

    Get PDF
    The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 ÎŒm to 160 ÎŒm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 ÎŒm, referred to as the 70 ÎŒm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 ÎŒm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 ÎŒm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding mass increase of ≃13% of the total dust mass in selected regions. The most likely explanation is that the 70 ÎŒm excess is due to the production of large very small grains (VSG) through erosion of larger grains in the diffuse medium. This FIR excess could be due to intrinsic variations of the dust/gas ratio, which would then vary from 4.6 to 2.3 times lower than the MW values across the LMC, but X_(CO) values derived from the IR emission would then be about three times lower than those derived from the Virial analysis of the CO data. We also investigate the possibility that the FIR excess is associated with an additional gas component undetected in the available gas tracers. Assuming a constant dust abundance in all ISM phases, the additional gas component would have twice the known H I mass. We show that it is plausible that the FIR excess is due to cold atomic gas that is optically thick in the 21 cm line, while the contribution by a pure H_2 phase with no CO emission remains a possible explanation

    Time to treatment with bridging intravenous alteplase before endovascular treatment:subanalysis of the randomized controlled SWIFT-DIRECT trial.

    Get PDF
    BACKGROUND We hypothesized that treatment delays might be an effect modifier regarding risks and benefits of intravenous thrombolysis (IVT) before mechanical thrombectomy (MT). METHODS We used the dataset of the SWIFT-DIRECT trial, which randomized 408 patients to IVT+MT or MT alone. Potential interactions between assignment to IVT+MT and expected time from onset-to-needle (OTN) as well as expected time from door-to-needle (DTN) were included in regression models. The primary outcome was functional independence (modified Rankin Scale (mRS) 0-2) at 3 months. Secondary outcomes included mRS shift, mortality, recanalization rates, and (symptomatic) intracranial hemorrhage at 24 hours. RESULTS We included 408 patients (IVT+MT 207, MT 201, median age 72 years (IQR 64-81), 209 (51.2%) female). The expected median OTN and DTN were 142 min and 54 min in the IVT+MT group and 129 min and 51 min in the MT alone group. Overall, there was no significant interaction between OTN and bridging IVT assignment regarding either the functional (adjusted OR (aOR) 0.76, 95% CI 0.45 to 1.30) and safety outcomes or the recanalization rates. Analysis of in-hospital delays showed no significant interaction between DTN and bridging IVT assignment regarding the dichotomized functional outcome (aOR 0.48, 95% CI 0.14 to 1.62), but the shift and mortality analyses suggested a greater benefit of IVT when in-hospital delays were short. CONCLUSIONS We found no evidence that the effect of bridging IVT on functional independence is modified by overall or in-hospital treatment delays. Considering its low power, this subgroup analysis could have missed a clinically important effect, and exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT with shorter in-hospital delays. Heterogeneity of the IVT effect size before MT should be further analyzed in individual patient meta-analysis of comparable trials. TRIAL REGISTRATION NUMBER URL: https://www. CLINICALTRIALS gov ; Unique identifier: NCT03192332

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky

    Full text link
    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared background (CIB) consisting of at present unresolved dusty high-z galaxies, where most of the star formation in the universe took place, (3) searching for distortions from the perfect CMB blackbody spectrum, which will probe a large number of otherwise inaccessible effects (e.g., energy release through decaying dark matter, the primordial power spectrum on very small scales where measurements today are impossible due to erasure from Silk damping and contamination from non-linear cascading of power from larger length scales). These are but a few of the highlights of the new science that will be made possible with PRISM.Comment: 20 pages Late

    Exploring Cosmic Origins with CORE: Cosmological Parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with theCORE space mission which is dedicated to mapping the polarisation of the CosmicMicrowave Background (CMB). CORE was recently submitted in response to ESA'sfifth call for medium-sized mission proposals (M5). Here we report the resultsfrom our pre-submission study of the impact of various instrumental options, inparticular the telescope size and sensitivity level, and review the great,transformative potential of the mission as proposed. Specifically, we assessthe impact on a broad range of fundamental parameters of our Universe as afunction of the expected CMB characteristics, with other papers in the seriesfocusing on controlling astrophysical and instrumental residual systematics. Inthis paper, we assume that only a few central CORE frequency channels areusable for our purpose, all others being devoted to the cleaning ofastrophysical contaminants. On the theoretical side, we assume LCDM as ourgeneral framework and quantify the improvement provided by CORE over thecurrent constraints from the Planck 2015 release. We also study the jointsensitivity of CORE and of future Baryon Acoustic Oscillation and Large ScaleStructure experiments like DESI and Euclid. Specific constraints on the physicsof inflation are presented in another paper of the series. In addition to thesix parameters of the base LCDM, which describe the matter content of aspatially flat universe with adiabatic and scalar primordial fluctuations frominflation, we derive the precision achievable on parameters like thosedescribing curvature, neutrino physics, extra light relics, primordial heliumabundance, dark matter annihilation, recombination physics, variation offundamental constants, dark energy, modified gravity, reionization and cosmicbirefringence. (ABRIDGED

    The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI): instrument and pre-launch testing

    Get PDF
    This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI), to be launched onboard of ESA's Herschel Space Observatory, by 2008. It includes the first results from the instrument level tests. The instrument is designed to be electronically tuneable over a wide and continuous frequency range in the Far Infrared, with velocity resolutions better than 0.1 km/s with a high sensitivity. This will enable detailed investigations of a wide variety of astronomical sources, ranging from solar system objects, star formation regions to nuclei of galaxies. The instrument comprises 5 frequency bands covering 480-1150 GHz with SIS mixers and a sixth dual frequency band, for the 1410-1910 GHz range, with Hot Electron Bolometer Mixers (HEB). The Local Oscillator (LO) subsystem consists of a dedicated Ka-band synthesizer followed by 7 times 2 chains of frequency multipliers, 2 chains for each frequency band. A pair of Auto-Correlators and a pair of Acousto-Optic spectrometers process the two IF signals from the dual-polarization front-ends to provide instantaneous frequency coverage of 4 GHz, with a set of resolutions (140 kHz to 1 MHz), better than < 0.1 km/s. After a successful qualification program, the flight instrument was delivered and entered the testing phase at satellite level. We will also report on the pre-flight test and calibration results together with the expected in-flight performance

    Developing common protocols to measure tundra herbivory across spatial scales

    Get PDF
    Understanding and predicting large-scale ecological responses to global environmental change requires comparative studies across geographic scales with coordinated efforts and standardized methodologies. We designed, applied and assessed standardized protocols to measure tundra herbivory at three spatial scales: plot, site (habitat), and study area (landscape). The plot and site-level protocols were tested in the field during summers 2014-2015 at eleven sites, nine of them comprising warming experimental plots included in the International Tundra Experiment (ITEX). The study area protocols were assessed during 2014-2018 at 24 study areas across the Arctic. Our protocols provide comparable and easy-to-implement methods for assessing the intensity of invertebrate herbivory within ITEX plots and for characterizing vertebrate herbivore communities at larger spatial scales. We discuss methodological constraints and make recommendations for how these protocols can be used and how sampling effort can be optimized to obtain comparable estimates of herbivory, both at ITEX sites and at large landscape scales. The application of these protocols across the tundra biome will allow characterizing and comparing herbivore communities across tundra sites and at ecologically relevant spatial scales, providing an important step towards a better understanding of tundra ecosystem responses to large-scale environmental change.CGB was funded by the Estonian Research Council (grant IUT 20-28), and the European Regional Development Fund (Centre of Excellence EcolChange). JDMS was supported by the Research Council of Norway (262064). OG and LB were supported by the French Polar Institute (program “1036 Interactions”) and PRC CNRS Russie 396 (program “ICCVAT”). DSH, NL, MAG, JB and JDR were supported by the Natural Sciences and Engineering Research Council (Canada). NL, MAG, JB and JDR were supported by the Polar Continental Shelf Program. NL was supported by the Canada Research Chair program and the Canada Foundation for Innovation. NL and JB were supported by Environment Canada and Polar Knowledge Canada. NL and MAG were supported by the Government of Nunavut, the Igloolik Community, and UniversitĂ© de Moncton. NL, MAG and JB were supported by the Northern Scientific Training Program. JMA was funded by Carl Tryggers stiftelse för vetenskaplig forskning and Qatar Petroleum (QUEX-CAS-QP-RD-18_19). IHM-S was funded by the UK Natural Environmental Research Council Shrub Tundra (NE/M016323/1) grant. ISJ was funded by the University of Iceland Research Fund. Fieldwork in Yamal peninsula (Erkuta, Sabetta and Belyi) for DE, NS and AS was supported by the Russian Foundation for Basic Research (No: 18-05-60261 and No: 18-54-15013), Fram Centre project YaES (No: 362259), the Russian Center of Development of the Arctic, and the “Yamal-LNG” company. Fieldwork in UtqiaÄĄvik was supported by the U.S. Fish and Wildlife Service. Fieldwork in Svalbard was supported by the Norwegian Research Council (AFG No: 246080/E10), the Norwegian Polar Institute, Climate-ecological Observatory for Arctic Tundra – COAT, the Svalbard Environmental protection fund (project number 15/20), and the University Centre in Svalbard (UNIS) and the AB-338/AB-838 students of 2018. Sampling at Billefjorden was supported by GACR 17- 20839S

    Canadian Stroke Best Practice Recommendations: Hyperacute Stroke Care Guidelines, Update 2015

    Get PDF
    The 2015 update of the Canadian Stroke Best Practice Recommendations Hyperacute Stroke Care guideline highlights key elements involved in the initial assessment, stabilization, and treatment of patients with transient ischemic attack (TIA), ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and acute venous sinus thrombosis. The most notable change in this 5th edition is the addition of new recommendations for the use of endovascular therapy for patients with acute ischemic stroke and proximal intracranial arterial occlusion. This includes an overview of the infrastructure and resources required for stroke centers that will provide endovascular therapy as well as regional structures needed to ensure that all patients with acute ischemic stroke that are eligible for endovascular therapy will be able to access this newly approved therapy; recommendations for hyperacute brain and enhanced vascular imaging using computed tomography angiography and computed tomography perfusion; patient selection criteria based on the five trials of endovascular therapy published in early 2015, and performance metric targets for important time-points involved in endovascular therapy, including computed tomography-to-groin puncture and computed tomography-to-reperfusion times. Other updates in this guideline include recommendations for improved time efficiencies for all aspects of hyperacute stroke care with a movement toward a new median target door-toneedle time of 30 min, with the 90th percentile being 60 min. A stronger emphasis is placed on increasing public awareness of stroke with the recent launch of the Heart and Stroke Foundation of Canada FAST signs of stroke campaign; reinforcing the public need to seek immediate medical attention by calling 911; further engagement of paramedics in the prehospital phase with prehospital notification to the receiving emergency department, as well as the stroke team, including neuroradiology; updates to the triage and same-day assessment Conflict of interest: Leanne K. Casaubon: Medtronic (as an independent study patient assessor for a cardiac TAVI study); NoNO Inc. as site PI for the Frontier study of NA-1 neuroprotective in stroke; Covidien as an advisory board member. Jean-Martin Boulanger: conference speaker for BI Novartis, Sanofi Aventis, Merck, Merz, Allergan, Pfizer, Bayer, Boehringer Ingelheim. Gord Gubitz: speaker for Bayer, Boehringer Ingleheim, and BMS Pfizer. Dr. Michael D. Hill: Heart and Stroke Foundation of Alberta Board Chair, salary award holder; Vernalis Group Ltd and Merck Ltd Consultant; Hoffmann-LaRoche Canada, provided drug for clinical trial, consultancy and CME lecturer; Coviden, research grant holder; Servier Canada, CME lecturer (funds donated to charity); BMS Canada, consultancy (funds donated to charity); Alberta Innovates Health Solutions, program grant award; principal investigator, ESCAPE trial. Brian Moses: speaker for AstraZeneca, Bayer, Boehringer Ingelheim, Sanofi Aventis, and Servier; speaker and advisory board member for BMS, Eli Lilly, Merck, NovoNordisk, Pfizer; advisory board member for Medtronic. Funding: The development of the Canadian Stroke Best Practice Recommendations is funded in their entirety by the Heart and Stroke Foundation, Canada. No funds for the development of these guidelines come from commercial interests, including pharmaceutical and medical device companies. All members of the recommendation writing groups and external reviewers are volunteers and do not receive any remuneration for participation in guideline development, updates, and reviews. All participants complete a conflict of interest declaration prior to participation. of patients with transient ischemic attack; updates to blood pressure recommendations for the hyperacute phase of care for ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. The goal of these recommendations and supporting materials is to improve efficiencies and minimize the absolute time lapse between stroke symptom onset and reperfusion therapy, which in turn leads to better outcomes and potentially shorter recovery times
    • 

    corecore