7 research outputs found

    LifeSavingResearch.pdf

    No full text

    Development of the Initial Surveys for the All of Us Research Program

    Get PDF
    BACKGROUND: The All of Us Research Program is building a national longitudinal cohort and collecting data from multiple information sources (e.g., biospecimens, electronic health records, and mobile/wearable technologies) to advance precision medicine. Participant-provided information, collected via surveys, will complement and augment these information sources. We report the process used to develop and refine the initial three surveys for this program. METHODS: The All of Us survey development process included: (1) prioritization of domains for scientific needs, (2) examination of existing validated instruments, (3) content creation, (4) evaluation and refinement via cognitive interviews and online testing, (5) content review by key stakeholders, and (6) launch in the All of Us electronic participant portal. All content was translated into Spanish. RESULTS: We conducted cognitive interviews in English and Spanish with 169 participants, and 573 individuals completed online testing. Feedback led to over 40 item content changes. Lessons learned included: (1) validated survey instruments performed well in diverse populations reflective of All of Us; (2) parallel evaluation of multiple languages can ensure optimal survey deployment; (3) recruitment challenges in diverse populations required multiple strategies; and (4) key stakeholders improved integration of surveys into larger Program context. CONCLUSIONS: This efficient, iterative process led to successful testing, refinement, and launch of three All of Us surveys. Reuse of All of Us surveys, available at http://researchallofus.org, may facilitate large consortia targeting diverse populations in English and Spanish to capture participant-provided information to supplement other data, such as genetic, physical measurements, or data from electronic health records

    Towards the assessment of sediment connectivity in a large Himalayan river basin

    No full text
    Sediment connectivity, defined as the degree of linkage between the sediment sources to downstream areas, is one of the most important properties that control�landscape evolution�in river basins. The degree of linkages amongst different parts of a�catchment�depends mainly on the hinterland characteristics (e.g. catchment morphology, slope, shape, relief, and elevation), channel characteristics (e.g. slope, stream network density, valley confinement), and the combined effects of vegetation (e.g.�land use changes�and land abandonment). This paper evaluates the sediment connectivity of the upper Kosi basin covering an area of ~52,731?km2�including Tibet and Nepal at different spatial scales. We have computed the index of connectivity (IC) using the equations originally proposed by Borselli et al. (2008) and modified by Cavalli et al. (2013) to evaluate the potential connection of sediment source areas to the primary channel network as well to the catchment outlet. Our results highlight significant spatial variability in sediment connectivity across the basin and provide important insights on structural sediment dynamics in a complex geological and geomorphological setting. We compare our results with the observed sediment load data at certain outlets and demonstrate that sediment flux in different sub-basins is controlled by variable slope distribution and land use and land cover that are strongly related to the structural connectivity. We argue that IC model can be extremely beneficial to understand sediment dynamics at catchment scale in a large river basin (~103�104?km2�scale), where systematic field investigations for mapping hillslope-channel linkages are not feasible.by Kanchan Mishra, Rajiv Sinha, Vikrant Jain, SantoshNepal and Kabir Uddin

    Graph theory—Recent developments of its application in geomorphology

    No full text
    corecore