710 research outputs found
Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect
We analyse the unfolding pathway of biomolecules comprising several
independent modules in pulling experiments. In a recently proposed model, a
critical velocity has been predicted, such that for pulling speeds
it is the module at the pulled end that opens first, whereas for
it is the weakest. Here, we introduce a variant of the model that is
closer to the experimental setup, and discuss the robustness of the emergence
of the critical velocity and of its dependence on the model parameters. We also
propose a possible experiment to test the theoretical predictions of the model,
which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical
Models for Physical and Biological Nanoscale Systems and Their Applications"
(proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016),
16 pages, 6 figure
Associations of vitamin D pathway genes with circulating 25-hydroxyvitamin-D, 1,25-dihydroxyvitamin-D, and prostate cancer:a nested case-control study
Vitamin D pathway single nucleotide polymorphisms (SNPs) are potentially useful proxies for investigating whether circulating vitamin D metabolites [total 25-hydroxyvitamin-D, 25(OH)D; 1,25-dihydroxyvitamin, 1,25(OH)2D] are causally related to prostate cancer. We investigated associations of sixteen SNPs across seven genes with prostate-specific antigen-detected prostate cancer
Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies
Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors
Effect of chitosan essential oil films on the storage-keeping quality of pork meat products
Edible films based on chitosan were prepared, with
and without basil or thyme essential oils, with the aim of
assessing their protective ability against lipid oxidation and
their antimicrobial activity. Chitosan films had good oxygenbarrier
properties, which were worsened by essential oil addition,
especially when the film equilibrium moisture content
increased. Due to the oxygen-barrier effect, all the films
effectively protected pork fat from oxidation, in comparison
to unprotected samples. In spite of the worsening of the
oxygen-barrier properties, the films with essential oils were
more effective than those of pure chitosan, which points to the
chemical action of specific antioxidant compounds of the oils.
Films were effective to control microbial growth in minced
pork meat, although the incorporation of essential oils did not
improve their antimicrobial activity. Throughout the storage,
the films led to colour changes in minced pork meat associated
with the conversion of myoglobin into metmyoglobin due to
the reduction of the oxygen availability.The authors acknowledge the financial support provided by the Universitat Politecnica de Valencia (PAID-06-09-2834), Generalitat Valenciana (GV/2010/082) and Ministerio de Educacion y Ciencia (AGL2010-20694). Author J. Bonilla is deeply grateful to Generalitat Valenciana for a Santiago Grisolia Grant.Bonilla Lagos, MJ.; Vargas, M.; Atarés Huerta, LM.; Chiralt Boix, MA. (2014). Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food and Bioprocess Technology. 7(8):2443-2450. https://doi.org/10.1007/s11947-014-1329-3S2443245078ASTM D3985. (1995). Standard test method for oxygen gas transmission rate through plastic films and sheeting using a coulometric sensor. West Conshohocken: American Society for Testing and Materials.Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104, 649–656.Aureli, P., Costantini, A., & Zolea, S. (1992). Antimicrobial activity of some plant essential oils against Listeria monocytogenes. Journal of Food Protection, 55, 344–348.Baranauskiene, R., Venskutoni, S. P. R., Viskelis, P., & Dambrauskiene, E. (2003). Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 51, 7751–7758.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012a). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: possibilities and limitations. Journal of Food Engineering, 110, 208–213.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012b). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26, 9–16.Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162–167.Caner, C., Vergano, P. J., & Wiles, J. L. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer and storage. Journal of Food Science, 63, 1049–1053.Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., et al. (2009). Chitosan/clay ‘films properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895–1902.Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: possibilities and limitations. International Dairy Journal, 14, 273–285.Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54, 2745–2749.Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C. V. L., & Porta, R. (2011). Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT--Food Science and Technology, 44, 2324–2327.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372–379.Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Growth inhibition of E. Coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. Journal of Food Protection, 68, 2559–2566.Govaris, A., Botsoglou, E., Sergelidis, D., & Chatzopoulou, P. D. (2011). Antibacterial activity of oregano and thyme essential oils against Listeria monocytogenes and Escherichia coli O157:H7 in feta cheese packaged under modified atmosphere. LWT - Food Science and Technology, 44, 1240–1244.Han, J. H., & Gennadios, A. (2005). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in Food Packaging (pp. 39–262). Oxford: Elsevier Academic.Kim, J., Marshall, M. R., & Wei, C. I. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43, 2839–2845.Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deterioration. Food Technology, 34, 36–41.Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71, 100–121.Moure, A., Cruz, J. M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., et al. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171.Rao, M. S., Chander, R., & Sharma, A. (2005). Development of shelf-stable intermediate moisture meat products using active edible chitosan coating and irradiation. Journal of Food Science, 70, 325–331.Salame, M. (1986). Barrier polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley.Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98, 443–452.Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011a). Use of essential oils in bioactive edible coatings. Food Engineering Reviews, 3, 1–16.Sánchez-González, L., Cháfer, M., Hernández, M., Chiralt, A., & González-Martínez, C. (2011b). Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 22, 1302–1310.Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53, 7749–7759.Singh, B., Falahee, M. B., & Adams, M. R. (2001). Synergistic inhibition of Listeria monocytogenes by nisin and garlic extract. Food Microbioliology, 18, 133–139.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41, 164–171.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.Vargas, M., Albors, A., & Chiralt, A. (2011). Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Science, 1, 39–43.Wan, J., Wilcock, A., & Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84, 152–158.Zivanovic, S., Chi, S., & Draughon, F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70, 45–51
P5A-Type ATPase Cta4p Is Essential for Ca2+ Transport in the Endoplasmic Reticulum of Schizosaccharomyces pombe
This study establishes the role of P5A-type Cta4 ATPase in Ca2+ sequestration in the endoplasmic reticulum by detecting an ATP-dependent, vanadate-sensitive and FCCP insensitive 45Ca2+-transport in fission yeast membranes isolated by cellular fractionation. Specifically, the Ca2+-ATPase transport activity was decreased in ER membranes isolated from cells lacking a cta4+ gene. Furthermore, a disruption of cta4+ resulted in 6-fold increase of intracellular Ca2+ levels, sensitivity towards accumulation of misfolded proteins in ER and ER stress, stimulation of the calcineurin phosphatase activity and vacuolar Ca2+ pumping. These data provide compelling biochemical evidence for a P5A-type Cta4 ATPase as an essential component of Ca2+ transport system and signaling network which regulate, in conjunction with calcineurin, the ER functionality in fission yeast
Podbat: A Novel Genomic Tool Reveals Swr1-Independent H2A.Z Incorporation at Gene Coding Sequences through Epigenetic Meta-Analysis
Epigenetic regulation consists of a multitude of different modifications that determine active and inactive states of chromatin. Conditions such as cell differentiation or exposure to environmental stress require concerted changes in gene expression. To interpret epigenomics data, a spectrum of different interconnected datasets is needed, ranging from the genome sequence and positions of histones, together with their modifications and variants, to the transcriptional output of genomic regions. Here we present a tool, Podbat (Positioning database and analysis tool), that incorporates data from various sources and allows detailed dissection of the entire range of chromatin modifications simultaneously. Podbat can be used to analyze, visualize, store and share epigenomics data. Among other functions, Podbat allows data-driven determination of genome regions of differential protein occupancy or RNA expression using Hidden Markov Models. Comparisons between datasets are facilitated to enable the study of the comprehensive chromatin modification system simultaneously, irrespective of data-generating technique. Any organism with a sequenced genome can be accommodated. We exemplify the power of Podbat by reanalyzing all to-date published genome-wide data for the histone variant H2A.Z in fission yeast together with other histone marks and also phenotypic response data from several sources. This meta-analysis led to the unexpected finding of H2A.Z incorporation in the coding regions of genes encoding proteins involved in the regulation of meiosis and genotoxic stress responses. This incorporation was partly independent of the H2A.Z-incorporating remodeller Swr1. We verified an Swr1-independent role for H2A.Z following genotoxic stress in vivo. Podbat is open source software freely downloadable from www.podbat.org, distributed under the GNU LGPL license. User manuals, test data and instructions are available at the website, as well as a repository for third party–developed plug-in modules. Podbat requires Java version 1.6 or higher
Genotyping of Human Lice Suggests Multiple Emergences of Body Lice from Local Head Louse Populations
While being phenotypically and physiologically different, human head and body lice are indistinguishable based on mitochondrial and nuclear genes. As protein-coding genes are too conserved to provide significant genetic diversity, we performed strain-typing of a large collection of human head and body lice using variable intergenic spacer sequences. Ninety-seven human lice were classified into ninety-six genotypes based on four intergenic spacer sequences. Genotypic and phylogenetic analyses using these sequences suggested that human head and body lice are still indistinguishable. We hypothesized that the phenotypic and physiological differences between human head and body lice are controlled by very limited mutations. Under conditions of poor hygiene, head lice can propagate very quickly. Some of them will colonize clothing, producing a body louse variant (genetic or phenetic), which can lead to an epidemic. Lice collected in Rwanda and Burundi, where outbreaks of louse-borne diseases have been recently reported, are grouped tightly into a cluster and those collected from homeless people in France were also grouped into a cluster with lice collected in French non-homeless people. Our strain-typing approach based on highly variable intergenic spacers may be helpful to elucidate louse evolution and to survey louse-borne diseases
Severe congenital neutropenia in a multigenerational family with a novel neutrophil elastase (ELANE) mutation
We have analysed a family with nine congenital neutropenia patients in four generations, several of which we have studied in a long-term follow-up of over 25 years. The patients were mild to severe neutropenic and suffered from various recurrent bacterial infections. Mutations in the genes ELANE, CSF3R and GFI1 have been reported in patients with autosomal dominant congenital neutropenias. Using a small-scale linkage analysis with markers around the ELANE, CSF3R, CSF3 and GFI1 genes, we were able to determine that the disease segregated with markers around the ELANE gene. We identified a novel mutation in the ELANE gene in all of the affected family members that was not present in any of the healthy family members. The mutation leads to an A28S missense mutation in the mature protein. None of these patients developed leukaemia. This is the first truly multigenerational family with mutations in ELANE as unambiguous cause of severe congenital neutropenia SCN
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …