504 research outputs found

    Recognisation of Outlier using Distance based method for Large Scale Database

    Get PDF
    This paper studies the difficulties of outlier detection on inexact data. We study the normal instances for each uncertain object using the instances of objects with analogous properties. Outlier detection is a significant research problem in data mining that goals to determine valuable abnormal and irregular patterns hidden in vast data sets. Most existing outlier detection approaches only deal with static data with comparatively low dimensionality. Newly, outlier detection for high-dimensional stream data turn into a new emergent research problem. A key remark that inspires this research is that outliers in high-dimensional data are predictable outliers, i.e., they are embedded in lower dimensional subspaces. Detecting projected outliers from high-dimensional stream data is a very stimulating task for numerous reasons. The paper shows the detailed study of outlier detection algorithms and its results also

    TiO\u3csub\u3e2\u3c/sub\u3e–graphene quantum dots nanocomposites for photocatalysis in energy and biomedical applications

    Get PDF
    The focus of current research in material science has shifted from “less efficient” single-component nanomaterials to the superior-performance, next-generation, multifunctional nanocom-posites. TiO2 is a widely used benchmark photocatalyst with unique physicochemical properties. However, the large bandgap and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. When TiO2 nanoparticles are modified with graphene quantum dots (GQDs), some significant improvements can be achieved in terms of (i) broadening the light absorption wavelengths, (ii) design of active reaction sites, and (iii) control of the electron-hole (e−-h+) recombination. Accordingly, TiO2-GQDs nanocomposites exhibit promising multifunctionalities in a wide range of fields including, but not limited to, energy, biomedical aids, electronics, and flexible wearable sensors. This review presents some important aspects of TiO2-GQDs nanocomposites as photocatalysts in energy and biomedical applications. These include: (1) structural formulations and synthesis methods of TiO2-GQDs nanocomposites; (2) discourse about the mechanism behind the overall higher photoactivities of these nanocomposites; (3) various characterization techniques which can be used to judge the photocatalytic performance of these nanocomposites, and (4) the application of these nanocomposites in biomedical and energy conversion devices. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of these nanocomposites. These challenges are briefly discussed in the Future Scope section of this review

    Removal of recalcitrant organic compounds from an industrial complex effluent by heterogeneous Fenton-type treatment

    Get PDF
    Because of their chemical complexity, industrial chemi-mechanical pulping effluents are evaporated and burned, in spite of the high associated cost involved in these processes. The aim of this study was to remove recalcitrant compounds from this kind of wastewater using a Fenton-type treatment. The main parameters involved in the process and their influence on the results were determined. Homemade catalysts based on CuO, Fe2O3, NiO and ZnO, supported on γ-Al2O3 have been tested for catalytic oxidation, and the CuO/γ- Al2O3 catalysts showed the greatest effect on total organic carbon (TOC) reduction (52.7%). A series of twolevel factorial experiments was subsequently applied to evaluate the most favorable range of conditions for CuO/γ-Al2O3 application. The studied variables were hydrogen peroxide concentration ([H2O2], g/L), active phase content (metal oxide supported on alumina, %), mass of catalyst (metal oxide/alumina system, g), and reaction temperature (°C). The highest reduction of all parameters was obtained at the superior level of all variables with CuO/γ-Al2O3, achieving reductions of chemical oxygen demand (COD) and TOC between 40 and 50%. Increasing catalyst mass did not produce additional benefit. This variable has a significant effect only on the reduction of aromatic compounds. At its low level, reduction in aromatic content exceeded 80%. Color reduction was influenced only by temperature (maximum reduction of 90%)Fil: Covinich, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Felissia, Fernando Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Fenoglio, Rosa Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Area, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    Reusable and long-lasting active microcleaners for heterogeneous water remediation

    Get PDF
    Self-powered micromachines are promising tools for future environmental remediation technology. Waste-water treatment and water reuse is an essential part of environmental sustainability. Herein, we present reusable Fe/Pt multi-functional active microcleaners that are capable of degrading organic pollutants (malachite green and 4-nitrophenol) by generated hydroxyl radicals via a Fenton-like reaction. Various different properties of microcleaners, such as the effect of their size, short-term storage, long-term storage, reusability, continuous swimming capability, surface composition, and mechanical properties, are studied. It is found that these microcleaners can continuously swim for more than 24 hours and can be stored more than 5 weeks during multiple cleaning cycles. The produced microcleaners can also be reused, which reduces the cost of the process. During the reuse cycles the outer iron surface of the Fe/Pt microcleaners generates the in-situ, heterogeneous Fenton catalyst and releases a low concentration of iron into the treated water, while the mechanical properties also appear to be improved due to both its surface composition and structural changes. The microcleaners are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and finite-element modeling (FEM)

    VULNERABILITES AND MITIGATION IN COMMUNICATION SYSTEM FOR GRID INTEGRATION OF WIND ENERGY

    No full text
    This paper provides the `concept of communication system challenges in power grid integration .The scada has been used as communication,fault diagnosis ,though the reliability of communication with scada in drastic environment but the problems to faced such as security ,policy, system network problems are in online internet facility. We discuss all the SCADA vulnerabilities in this paper they are attributable to the lack of a well-developed and meticulously practiced security policy also we provide some mitigation of SCADA system which is ongoing process
    corecore