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Abstract 

Because of their chemical complexity, industrial chemi-mechanical pulping effluents are evaporated and 

burned, in spite of the high associated cost involved in these processes. The aim of this study was to remove 

recalcitrant compounds from this kind of wastewater using a Fenton-type treatment. The main parameters 

involved in the process and their influence on the results were determined. Homemade catalysts based on 

CuO, Fe2O3, NiO and ZnO, supported on γ-Al2O3 have been tested for catalytic oxidation, and the CuO/γ-

Al2O3 catalysts showed the greatest effect on total organic carbon (TOC) reduction (52.7%). A series of two-

level factorial experiments was subsequently applied to evaluate the most favorable range of conditions for 

CuO/γ-Al2O3 application. The studied variables were hydrogen peroxide concentration ([H2O2], g/L), active 

phase content (metal oxide supported on alumina, %), mass of catalyst (metal oxide/alumina system, g), and 

reaction temperature (°C). The highest reduction of all parameters was obtained at the superior level of all 

variables with CuO/γ-Al2O3, achieving reductions of chemical oxygen demand (COD) and TOC between 40 

and 50%. Increasing catalyst mass did not produce additional benefit. This variable has a significant effect 

only on the reduction of aromatic compounds. At its low level, reduction in aromatic content exceeded 80%. 

Color reduction was influenced only by temperature (maximum reduction of 90%). 

 

Abbreviations: AOP, advanced oxidation process; BAT, best available technology; BET, Brunauer, Emmet, 

and Teller, BOD, biochemical oxygen demand; CMP, chemi-mechanical pulping process; COD, chemical 

oxygen demand; EDS, energy dispersive X-ray; HYP, high yield pulping process; HPLC, high performance 

liquid chromatography; SD, standard deviation; SEM, scanning electron microscopy; tc, treatment 

combination; TOC, total organic carbon; XRD, X-ray diffraction 

 

Keywords: Advanced oxidation, Chemi-mechanical pulping effluent, Factorial experimental design, 

Heterogeneous type Fenton reactions, Recalcitrant compounds 

 

1. Introduction 

In Fenton reactions of model compounds, the evolution of oxidation mechanism of the system and its 

intermediates is widely understood [1--6]. On the contrary, in the case of real industrial streams, the catalytic 

parameters and catalytic conditions of the treatment are barely known. 

Generally, the untreated liquid streams that result from processing of lignocellulosic materials have high 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (mainly fibers), fatty 

acids, tannins, resin acids, lignin and its derivatives. Some contaminants are natural and other are xenobiotic, 

i.e. formed during the pulp and paper process, and recalcitrant to degradation [7, 8]. In alkaline sulfite chemi-

mechanical pulping processes (CMP), wastewater contains low molecular weight hemicelluloses, sugars, 

organic acids and several compounds that are recalcitrant to microbiological treatment, such as aromatic 

derivatives from wood extractives and labile lignin fractions. As CMP processes do not have a chemical 

recovery system, diluted spent liquors are generally treated in conventional effluent treatment systems, but 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

recalcitrant compounds are not affected and are discharged as they are [9--11]. A proper effluent treatment is 

therefore mandatory. 

In these processes (as in many other cases), the chemical structure of wastewater is scarcely established, 

which makes the design of an effluent treatment system very difficult. Since this effluent is recalcitrant 

to biological degradation and it might be toxic to aquatic species [12, 13], conventional treatment 

systems are not enough and pulp and paper mills are forced to adopt technologically advanced 

treatments [14, 15]. 

Advanced oxidation processes (AOP) exploit the high oxidation potential of hydroxyl radicals, which 

attack most of organic molecules [16]. The high reactivity of these radicals and their low selectivity 

during the oxidation process are useful attributes that make these technologies a promising option for 

the treatment of effluents containing refractory compounds [14, 17]. 

In many cases, the objective of the oxidation process is not complete mineralization, with the 

subsequent conversion from organic carbon to carbon dioxide, but the conversion of pollutants into 

biodegradable substances that do not cause inhibition problems in the biomass of conventional 

biological treatment, nor cause ecotoxicity problems in the discharge. The application of one method 

over the other mainly depends on the contaminant concentration and flow rate of the effluent [18, 19]. 

The utilization of H2O2 has emerged as a viable alternative among other oxidants, because it improves 

the efficiency of the oxidation, it is non-toxic and does not form any harmful by-products, and the 

reactions are carried out under non-critical conditions [20]. The process is performed at atmospheric 

pressure and low temperatures. Initial studies on AOP with H2O2 were carried out using iron salts as 

homogeneous catalysts in the reactions known as “Fenton reactions”. The main disadvantage of 

homogeneous catalysts is the difficulty of the post-reaction separation of the catalysts from the product 

stream. It is then necessary to implement recovery operations to retrieve the used catalyst with the 

consequent increase of operational costs. An alternative solution to this problem is the deposition of the 

active phase on a porous solid, which characteristics are comparable to those of homogeneous catalysts, 

but that can be recovered by simple separation steps for reuse in other processes. Different variants of 

catalytic systems that work with active ions on a solid support are in study. In the field of 

heterogeneous catalysis, such reactions are known as “Fenton type reactions” [21--23]. The Fenton 

reagent's mechanism has not been fully explained because of the variety of complex compounds and 

intermediates that are formed, and their subsequent reactions. During the reaction with the solution of 

H2O2 and salts of Fe(II), organic compounds are oxidized with a radical chain mechanism [24], where 

hydroxyl radicals are capable of rapidly attacking organic substrates [25]. The main parameters that 

govern this system are: the initial concentration of H2O2, the concentration of Fe(II) and the 

temperature of the reaction [26]. 

High yield pulping processes (HYP) which combine chemical action prior to mechanical action are CMP. The 

unknown chemical structure and complexity of some contaminants in high yield pulping effluents represent a 

challenge. The aim of this study was to remove recalcitrant compounds from a CMP industrial effluent using 

a Fenton type treatment. The main parameters involved in the process and their influence on the results were 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

determined. 

The first part of the work consisted of selecting efficient and stable metal oxides to eliminate recalcitrant 

substances. To select a particular catalytic system, the behavior of different catalysts consisting of metal 

oxides supported on alumina was evaluated, analyzing the oxidation of recalcitrant compounds in a Fenton 

type system. No reports on the treatment of HYP effluents treated by catalytic processes such as Fenton-type 

reactions have been found. Because of their chemical complexity, “best available technologies” (BAT) 

practice consists of evaporation and burning, in spite of the high associated cost involved in these processes. 

An experimental design consisting in a series of two-level factorial experiments was applied to evaluate the 

most favorable range of conditions for the oxidation of recalcitrant compounds. 

 

Materials and methods 

2.1 Black liquor 

The spent liquor came from Papel Prensa S.A. integrated mill, located in San Pedro, Argentina, which 

produces 132 000 tons/year of soda-sulfite chemi-mechanical pulps from a mixture of willows, poplar and 

eucalyptus, and newspaper. In alkaline sulfite CMP wood chips are impregnated with sodium hydroxide and 

sodium sulfite (pH 9--10), and they are subsequently treated mechanically in a refiner. Chemical treatment is 

slight and lignin is not removed, but only softened. This type of pulping allows the use of low-density 

hardwoods as a fiber raw material. The actual effluent comprises several streams: 1) liquid waste from 

deinking plant; 2) water from wood treatment; 3) black liquor from the chemical treatment of wood (pH 7-8, 

deep red color, mainly composed by extractive and lignin derived from the product of the chemical reaction 

between wood and pulping liquor); 4) effluent from chemi-mechanical pulp washing; 5) effluent from the 

bleaching plant; and 6) white water from the paper making section of the mill. 

As effluent 3) contains the highest polluting load, dilutions of liquor 3) were performed with a liquor/water 

ratio of 1:50 to simulate the final mill effluent. The liquor was stored in plastic containers and was used 

without filtration. Oxidative processes were applied to this simulated effluent. 

The main characteristics of the industrial spent liquor are shown in Table 1. 

 

2.2 Catalyst preparation and characterization 

Samples of several metal oxides supported on alumina were tested at 70°C. Pellets of γ-Al2O3 (Alfa SASOL) 

were used as support and were impregnated using aqueous solutions of Cu(NO3) · 2.5 H2O (Riedel-de Haën, 

pa), Ni(NO3) · 2.6 H2O (Baker, pa), Zn(SO4) · 7 H2O (Riedel-de Haën, pa), citrate Fe(III) (BioPack, pa) as 

precursors. The incipient wetness impregnation method comprises mixing the support with an aqueous 

solution containing an appropriate amount of salt so that, after calcination, the catalyst contains the required 

metal content. The volume of the solution that is prepared is equal or slightly smaller than the pore volume of 

the support. The maximum load is limited by the solubility of the precursor in the solution. Solids were air 

dried during 24 h, then oven dried at 120 °C, and finally calcined at 900 °C in air atmosphere. 

To select the metal system, γ-Al2O3 (I) pellets of 2.5 mm in diameter and 190 m2/g of surface area 

(determined by the Brunauer, Emmet, and Teller method (BET) method) were used. The final charge of the 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

four catalysts (CuO/Al2O3, NiO/Al2O3, ZnO/Al2O3 and Fe2O3/Al2O3) was 5% by weight. In addition, 

experiments were carried out using two commercial pellets catalyst: Haldor-Topsoe (52% CuO, 25% ZnO) 

and Engelhard (12.5% CuO, 0.3% NiO) for comparison. 

To evaluate the factors that influence the process, γ-Al2O3 (II) pellets 1.8 mm in diameter and 200 m2/g of 

surface area (according to the manufacturer) were used. The final load of catalysts used in this stage was 

established according to the experimental design. 

The support and the catalysts were characterized using the following techniques: 

 Surface areas were calculated from nitrogen adsorption at −196 °C by using a Micromeritics 

FlowSorb II 2300. 

 Oxide structures and cluster size of the synthesized metal oxides supported on alumina were 

determined by techniques of powder X-ray diffraction (powder XRD) using PANanalytical, X’Pert 

Pro equipped with Cu Kα radiation. The patterns were recorder over a range of 10° < 2θ < 70° and 

compared to the JCPDS files to confirm phase identities. 

 The surface morphology of the catalysts was examined by means of a scanning electron microscopy 

(SEM). 

The elemental composition of the catalysts was determined by energy dispersive (EDS) X-ray spectroscopy 

using an EDAX Genesis XM4-Sys 60 equipment, equipped with a EDAX multichannel analyzed model 

EDAM IV, sapphire detector Si(Li) and Be window, super ultra-thin, software EDAX Genesis version 5.11. 

 

2.3 Experimental design 

To determine the magnitude of the effect of each variable (factor) on the studied system, experiments were 

conducted according a 24 factorial design. In this design, the number of combinations of treatments (tc) is 

given by 2n, where n corresponds to the number of the analyzed experimental variables. In this study, n = 4, 

therefore tc = 24= 16 treatments. The studied variables were hydrogen peroxide concentration [H2O2] in g/L, 

active phase content, that is, content of metal oxide supported on alumina (%), mass of catalyst, i.e. metal 

oxide/alumina system (g) and reaction temperature (°C). The analysis of each experiment was performed 

using coded levels (+1 and --1 values), which arise from the true values converted to independent unit values 

of the factors. The real and coded values of each level of the experimental factors are shown in Table 2. 

The H2O2 dosage was based on the stoichiometric ratio with respect to COD. This was calculated assuming 

complete oxidation of COD to CO2 and H2O. The H2O2 stoichiometric concentration respect to COD value 

was 1.98 g/L. To set H2O2 levels, the feasibility of reducing the treatment cost was assessed, so the lowest 

(sub-stoichiometric I) and uppermost (upper-stoichiometric II) values of the experimental design correspond 

to H2O2/COD ratios of 0.9:1, and 1.2:1, respectively. 

 

2.4 Catalytic activity 

A 250 mL PYREX glass batch reactor with a glass stopper equipped with a condenser, a thermocouple, and 

pH meter were used. To minimize external mass transport effects, experiments were carried out with a high-



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

speed magnetic stirrer (1200 rpm). Testing was performed in contact with air at atmospheric pressure. The 

reaction volume was 100 mL (with a dilution of 1:50 such as initial values of COD and TOC of the diluted 

liquor were 931 and 433 mg/L, respectively). The experiments were conducted using γ-Al2O3. The 

H2O2/COD ratio for the selection of the metallic system analysis was fixed as 9.4:1. H2O2 in excess (18.6 g/L) 

was used to select the most suitable catalyst metal system, since the extent of recalcitrance of this effluent was 

not known. The oxidation reaction was carried out at 70°C and with 1 g catalyst in all assays. All catalytic 

reactions were developed without pH adjustment to record the natural tendency of each catalyst system, 

allowing to avoid pH control systems and to compare the activity of the different catalyst systems. 

Once the catalyst was added to the liquid mixture in the reactor, and the system reached the reaction 

temperature, initial time was recorded (t = 00, corresponding to the sample M00). At this point the 

corresponding amount of H2O2 was added, initiating the oxidation reaction (time zero, t = 0, corresponding to 

the sample M0). 2.5 mL samples were taken at different time intervals such as 0, 15, 30, 60, 120, 180 and 240 

min (each sample was labeled from M0 to M6 according to time intervals) and were kept in plastics vials and 

then analyzed. The total oxidation reaction time was 240 min (M6). The analyzed responses throughout the 

reaction were: percentage of TOC reduction (TOC % reduction), percentage of aromatic content reduction 

(aromatic % reduction), percentage of COD reduction (COD % reduction), percentage of color reduction 

(color % reduction) and H2O2 consumption. 

TOC conversion in blank trials (Al2O3 + H2O2 + effluent; H2O2 + effluent; Al2O3 + effluent) was negligible. 

 

2.5 Analytical Techniques 

Solids were determined according to Tappi T629 [27]. Inorganic content was assessed by determining the 

ashes at 525°C according to Tappi T211 [28]. The color of the effluent was measured by spectroscopy, 

measuring the absorbance at 450 nm (TECHCOMP spectrometer). COD was measured following the 

technique SM 5220-B (Standard Methods for the Examination of Water and Wastewater) [29]. To assess 

oxidation, total organic carbon (TOC) was measured using a TOC analyzer (Shimadzu, TOC-VCPN model). 

The evolution of aromatic compounds and the acids present in liquors, and peroxide consumption during the 

reaction, were quantified by high performance liquid chromatography (HPLC) (Waters, Massachusetts, USA) 

using an Aminex-HPX87H column under the following conditions: 4 mM H2SO4 as eluent, flow rate of 0.6 

mL/min, 35°C, and UV diode array detector (organic acids at 210 nm and aromatic compounds at 254 nm). 

 

2.6 Statistical evaluation 

All results were statistically analyzed using the Statgraphics software at 95% of confidence level. 

 

3 Results and discussion 

3.1 Characterization of the catalysts 

The characterization results of the γ-alumina and tested catalysts are summarized in Table 3. Both the 

impregnation process and the thermal treatment induced a decrease in the surface areas [30], but despite the 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

calcination temperatures, the results show acceptable surface areas after calcination, which provides the 

ability to achieve high oxidation values in further catalyst experiments. Therefore, the key point in producing 

high-performance catalysts is to increase or maintain the surface area [31]. BET values from Table 3 also 

indicate that the use of γ-Al2O3 is very important to provide high surface areas [32]. The performance of metal 

oxides as catalyst supports depends on their crystalline structure and textural properties. Although porosity of 

the catalyst was not measured, it can be assumed that porosity was slightly affected by calcination. 

Mesoporous materials such as γ-Al2O3 are preferred because they offer the advantage of avoiding pore 

plugging [33]. Mesopores are the paths for reactants and products, rendering high dispersion of active phase 

[34] and increase the amount of accessible active sites, improving catalytic reactions [35]. 

X-ray diffraction analysis revealed the presence of the characteristic peaks of the γ-Al2O3 phase (see Fig. 1). 

No peaks of other metals-containing phases were detected, only the main peaks corresponding to the γ-

alumina phase, which are 2θ = 66.7° (100), 46.1° (80), 37.4° (60), and 39.7° (30). This result shows that the 

support is thermally stable and no structural changes occurred during the preparation of the catalyst, at least 

measurable by this technique [36]. From the absence of diffraction lines associated with the studied metal 

oxides, it can also be deduced that the concentration of impregnated active phase is quite low and the formed 

particles are well dispersed oxides [37], preventing its detection by XRD, as reported for Fe2O3/Al2O3 [30], 

CuO/Al2O3 [38], NiO/Al2O3 [39], and ZnO/Al2O3 [40]. 

The dispersion of metal species on the surface of the catalysts was analyzed by SEM-EDAX. Figure 2 shows 

SEM pictures, EDS spectra and the quantitative analysis (active phase content) obtained for CuO/Al2O3(I), 

NiO/Al2O3(I), and ZnO/Al2O3(I) catalysts. Fe2O3/Al2O3(I) SEM and EDAX spectra are not shown, but the 

quantification gave 7.37% of Fe2O3. This difference of 5% can be attributed to experimental errors, mostly of 

the equipment of measure. For all catalyst systems analyzed by SEM, the supported particles are well 

dispersed and distributed homogeneously over the substrate. The composition of each catalyst via 

spectrometry and EDX was determined as the average of four replicas. Catalysts based on Zn and Fe 

presented sulfur and chlorine impurities, respectively. The presence of the impurities was due to precursors 

used in both cases, which were not fully eliminated by thermal treatment during calcination. 

 

3.2 Selection of the metallic system 

Catalytic activity tested on different systems is summarized in Fig. 3 (as TOC % reduction). The NiO/Al2O3 

catalyst (reduction of 3.7%) showed a statistically similar behavior to that of the blank test (p < 0.05); i.e. 

which means that does not produce a significant effect on percentage of TOC reduction. These results differ 

from those observed by other authors [37, 41], who confirmed the high oxidizing power of supported nickel 

applied to several types of compounds and the strong interaction between the metal particles and the support. 

These differences could be explained by the low active phase content and low working temperature used in 

this work. The catalyst NiO/Al2O3, and Engelhard (39.6% of TOC reduction), showed significant differences 

in their behavior (p < 0.05), but it is presumed that the high conversion rate achieved by the bimetallic catalyst 

is not the result of nickel action. Haldor-Topsoe and ZnO/Al2O3 (47.1 and 38.7% of TOC reduction, 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

respectively) showed no significant differences in their behavior (p < 0.05). Copper and zinc appear to have a 

synergistic effect. In addition, CuO/Al2O3 and Fe2O3/Al2O3 catalysts presented a significant effect on TOC 

(52.7 and 30.10%, respectively). The oxidative action of Fe2O3/Al2O3 was not significantly different from 

ZnO/Al2O3 (p < 0.05). Therefore, CuO/Al2O3, ZnO/Al2O3 and Fe2O3/Al2O3 catalysts have the greatest effect 

on the oxidation of recalcitrant compounds, and consequently, the highest values on the percentages of TOC 

reduction. The maximum conversion values achieved were generally low. This may be due to the high value 

of the initial concentration of peroxide, since H2O2 in excess can generate radical capturing compounds 

(scavenging effect), decreasing the oxidation efficiency [42]. 

Leaching of the active phase was not observed in any of the tests when working with an excess of H2O2, 

possibly also due to the slight variation of pH of the solutions, which remained near neutrality [43, 44]. This 

trend can be explained by the formation of sodium carbonate, whereas the reaction proceeds because of the 

oxidation of liquor components. It should be noted that alumina used as support gives the catalyst certain 

chemical properties that influence pH, among other conditions of the reaction. The pH values of the oxidation 

reactions were close to 7.3, the value in the blank trials using only the support (alumina as catalyst). In cases 

when homemade catalyst was used, the pH was also close to this value (see Table 4), indicating that the pH of 

the reaction medium is also controlled by the support [45]. Acid and basic sites at the surface of γ-Al2O3 

behave exactly as acid and basic substances in solution, probably buffering the reactions with the alkaline 

liquor. Therefore, they respond reversibly to a change in the pH of the solution with the concomitant variation 

of the total surface charge [46]. Thus, it is possible that the higher catalytic activity of a catalyst based on 

copper is also based on the favorable pH of the reaction [47]. On the contrary, optimal pH for an iron based 

catalyst is between 3 and 4, which discourages their use for practical applications [48]. 

Copper oxide was selected as oxidation catalyst for the rest of the work, as it generated one of the highest 

percentages of mineralization. Moreover, the pH range of the reaction media (near neutral) is considered 

optimal for its use [49], which represents an additional advantage when working with alkaline liquors because 

pH control is not needed. 

 

3.3 Effect of temperature, hydrogen peroxide concentration, active phase content, and mass of catalyst 

The results of the analysis of the factorial design at 240 min of reaction (M6) are shown in Table 5. 

The effect of factors is defined as the change in the studied response as a consequence of the change in factor 

level, from the lower to the upper level and vice versa. The effect of the studied factors (and their levels) on 

the percentage of TOC reduction, aromatic compounds reduction, and COD reduction can be seen in Fig. 4. 

Standard deviations (SD) for the means of TOC, aromatic compounds and COD were ±1.83, ±2.22, and ±1.28 

respectively. The percentage of TOC reduction, aromatic compounds reduction, and COD reduction can be 

seen in Table 6. 

Temperature was the most important factor for TOC reduction over the studied range (p-value: 0.0002). The 

oxidation degree reached a maximum at the highest temperature, as shown in Fig. 4 (70°C). A potential 

solution to improve mineralization degree with the same dose of H2O2 is to increase temperature, because it 

determines the radicals generation rate [50, 51], reducing reaction costs [52, 53]. The detrimental effect of 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

competitive reactions and scavenging, which appears when the ratio of oxidizing agent is not correct (for 

example, when hydrogen peroxide concentrations is above the optimum), is partly offset by the positive 

action of increasing temperature [26]. Temperature is also the most influential factor in COD and aromatic 

compounds reduction (p-value of 0), as shown in Fig. 4. The greatest percentages of reduction were achieved 

at the highest value of the variable (70°C). Discoloration of the effluent showed the same behavior (p-value: 

0.0084). 

Hydrogen peroxide concentration showed significant influence on TOC conversion rates (p-value: 0.0243), 

COD (p-value: 0.0336) and aromatic content (p-value: 0.0005). Even if the best oxidation rates were attained 

working with the highest H2O2 concentration, conversion rates were not as high as expected (Fig. 4). Peroxide 

did not have significant effect on discoloration of the effluent. This behavior is not in agreement with findings 

of other authors [54, 55], but H2O2 concentrations used in the present study were low. 

Only the catalyst mass had a significant effect on the reduction of aromatic compounds (p-value: 0.0207). The 

highest reduction was achieved with 0.5 g of catalyst load (Fig. 4). Increasing catalyst mass within the studied 

range (0.5–1 g) did not result in an additional benefit in COD and TOC reduction, although active sites for 

H2O2 decomposition and for organic compounds adsorption are increased [56]. Significant reductions of TOC 

and COD were achieved by increasing active phase content (p-values: 0.0179 and 0.0002 for TOC and COD, 

respectively), suggesting that the active phase (catalyst after calcination) is not in the bulk of the support but 

on the surface (Fig. 4). 

The interaction between active phase and temperature showed to be highly significant (p = 0.0183). A 

synergistic effect can be observed in TOC, COD, and aromatic reduction when both variables were at their 

uppermost level (2.5 % and 70°C). The interactions between [H2O2] and active phase (p =0.0194), and [H2O2] 

and catalyst mass (p = 0.0077) were only significant on percentage of COD reduction. 

The significance of each factor over the response varied along the oxidation reaction, so this must be taken 

into account to select and optimize the catalytic system. The effect of each significant factor on the 

percentages of TOC and of aromatic compounds reductions is shown in Fig. 5 (non-significant factors and 

interactions are not shown). Figure 5 shows that maximum removals were produced at high levels of 

temperature, hydrogen peroxide, and active phase for TOC, whereas in the case of aromatic compounds, high 

levels of temperature and peroxide, and low level of catalyst mass were necessary. 

According to Table 5, final pH remained almost constant despite the different tested conditions. Similar final 

pH values probably are an indication that there are similar distribution of intermediates and/or similar 

accumulation of carboxylic acids at the end of each oxidation reaction [57]. As the only identified species 

were acetic acid, oxalic acid, sulfur compounds, sodium carbonate and other salts [10, 11], probably these last 

ones buffered the oxidation reaction and avoid higher degree of mineralization. It is known that those 

compounds are recalcitrant and interfere the Fenton oxidation process [58, 59]. 

Since H2O2 consumption is critical in this catalytic process, the oxidation reactions were also evaluated using 

the “η parameter” (Table 5). This parameter, as defined by several authors [60], represents the reagent 

consumption considered as the amount of TOC (mg/L) and COD (mg/L) converted per unit of decomposed 

H2O2 (g/L). From the comparison of treatment conditions which differ only in the temperature of reaction, the 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

efficiency of H2O2 does not decrease when increasing temperature as should be expected if H2O2 is 

decomposed due to thermal instability. On the contrary, a higher temperature implies a faster, and more 

efficient cooper-catalyzed H2O2 conversion into radicals, enhancing mineralization. Other authors [54] also 

found that H2O2 conversion into hydroxyl radicals is accelerated as the temperature increases, and the amount 

of H2O2 available to scavenge these radicals is accordingly small, allowing a higher H2O2 consumption yield 

for a given conversion of TOC and COD. 

The long-term stability of a catalyst is essential for industrial applications. A catalyst batch was retained and 

reused again at the same conditions (tc: 12 of the experimental design), without treatment between runs 

maintaining a similar alkaline liquor concentration. The solid was just recovered from the solution after the 

reaction, dried at room temperature and tested again. The TOC removal achieved and the H2O2 consumed 

were similar after five consecutive cycles, indicating that it is possible to reuse the catalyst without affecting 

its efficiency. The analysis of TOC reduction profiles in the repeated experiments showed a slight induction 

period which marginally lengthened the consecutive runs. Nevertheless, the results observed for the fifth 

reuse of the catalyst showed that it was still active and able to be used. 

 

3.4 Effect of the initial concentration of hydrogen peroxide and active phase in conditions out of the 

design 

Fenton systems using Cu2+ catalysts require a larger stoichiometric excess of H2O2, compared to conventional 

Fenton systems, to overcompensate the competitive scavenging by O2 (this treatment needs to work under 

aerobic conditions) [49]. To verify if this is the case in the current study, hydrogen peroxide concentrations 

much higher than stoichiometric values were tried (Fig. 6). Under these conditions (large excess of oxidizing 

agent) differences in mean reductions of TOC and COD were 34 and 40%, respectively, of those obtained 

with upper-stoichiometric II concentration, respectively (p-value < 0.05), as shown in Fig. 6. The three 

studied H2O2 concentrations resulted in significant differences on the reduction of aromatic compounds (p-

value < 0.05). As H2O2 concentration increases, the amount of hydroxyl radicals available for the oxidation of 

pollutants also increases and the removal of recalcitrant compounds increases as well. Nevertheless, the 

efficiency of a dose of H2O2 80% higher than that of the initial trials was very low (only 15--20% of TOC 

reduction). It is possible that the excess of H2O2 has promoted scavengers generation (radical capture 

compounds), decreasing the oxidation efficiency [61]. Final TOC conversions were 37, 40, and 62% for 

peroxide concentrations corresponding to sub-stoichiometric I, upper-stoichiometric II, and in excess, 

respectively. 

Increasing the active phase induces the oxidant to generate more free radicals [62]. A correct balance between 

the mass of catalyst and the supported metal oxide is essential to maximize the amount of radicals generated 

in these systems [63]. Oxidation reactions using 5% of active phase were carried out (in addition to the 

design), but there were no statistically significant differences in COD and aromatic reductions between the 

three amounts of active phase tried (Fig. 6). TOC conversion decreased by 39.2% with respect to the other 

amounts of active phase when 5% was used (p-value < 0.05). Even if it is generally assumed that the 

concentration of the active phase has a strong influence on free radicals generation and it has also a great 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

influence on the kinetics reaction of TOC reduction [64, 65], it was not the case in this study. The relative 

difference between aromatic compounds and TOC removal was higher when using 5% of active phase. The 

results suggest that an important amount of the organic intermediates remain in the reaction mixture [66]. In 

conventional Fenton processes, the organic matter competes with the metallic substance for the hydroxyl 

radicals. It is then assumed that with 5% of active phase, the TOC at the end of the catalytic reaction is low, as 

the ratio metal content/ oxidizing agent decreased [42, 67]. 

 

Concluding Remarks 

Catalytic oxidation in the presence of hydrogen peroxide could be an efficient alternative to treat effluents 

from chemi-mechanical pulp processes. 

It was found that NiO/Al2O3 catalyst was not active, since it did not produce a significant effect on the TOC 

reduction. 

Catalysts based on Cu, Fe, and Zn showed the best results in terms of TOC reduction and aromatic reduction 

along the oxidation reaction. Copper did not generate active phase leaching when working with an excess of 

H2O2. 

When working with the Cu catalyst, temperature showed to be the most important factor for TOC, COD, and 

aromatic reduction of the simulated effluent in the studied range, being the only factor that significantly 

affected the effluent discoloration. The highest values of oxidation and discoloration were achieved at the 

uppermost temperature level (70°C). 

Hydrogen peroxide concentration significantly reduced TOC and COD, although the achieved conversion 

(40--50%) was lower than expected in its uppermost level (2.5 g/L). However, reduction of the aromatic 

content was near 80%. The inability of the catalyst to achieve higher oxidation of refractory compounds was 

not a consequence of the availability of oxidizing agent. 

Catalyst mass affected only the reduction of aromatic compounds, showing its greatest effect at its lowest 

level (0.5 g). 

The highest level of active phase tested in the experimental design (2.5%) produced maximum reductions of 

TOC and COD. Working with high percentages of active phase (5%) did not produce any improvement. 

 

The authors have declared no conflict of interest. 
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Figure 1: XRD pattern. A) Fresh catalyst used in the selection of metal system. B) Fresh catalyst 

used in the experimental design 

Figure 2: SEM images (2000×) and EDS spectra, a) CuO/Al2O3(I), b) ZnO/Al2O3(I), c) NiO/Al2O3(I) 

Figure 3: TOC reduction (%) for different catalytic systems. Blank trial I: Al2O3/effluent; blank trial II: 

Al2O3/H2O2/effluent; blank trial III: H2O2/effluent (blank trials are batch reactions without active phase or 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

hydrogen peroxide) 

Figure 4: Effect of significant factors on TOC reduction (%), aromatic compounds reduction, and COD 

reduction. 

Figure 5: Reduction (%) of: a) TOC, b) aromatic compounds, for 240 min of reaction. 

Figure 6: Influence of peroxide concentration and active phase content on the TOC reduction (%), aromatic 

compounds reduction (%), and COD reduction (%). 

 

Table 1: Chemical characteristics of the spent liquor 

Total soluble solids (g/L) 61.1 

pH 7.4 

COD (mg/L) 46 550 

TOC (mg/L) 21 665 

Ashes at 525°C (% of total soluble solids) 52.3 

Acetic acid (g/L) 23.6 

Formic acid(g/L) 0.3 

Propionic acid (g/L) 0.6 

 

 

Table 2: Levels of each experimental factor in real and transformed values 

Treatment 

(tc) 

[H2O2] 

g/L 

Active phase 

% 

Mass 

g 

Temperature 

 ºC 
[H2O2] 

Active 

phase 

Mass 

 

Temperature 

 

1 1.78 1.25 0.5 45 --1 --1 --1 --1 

2 2.43 1.25 0.5 45 1 --1 --1 --1 

3 1.78 2.5 0.5 45 --1 1 --1 --1 

4 2.43 2.5 0.5 45 1 1 --1 --1 

5 1.78 1.25 1.0 45 --1 --1 1 --1 

6 2.43 1.25 1.0 45 1 --1 1 --1 

7 1.78 2.5 1.0 45 --1 1 1 --1 

8 2.43 2.5 1.0 45 1 1 1 --1 

9 1.78 1.25 0.5 70 --1 --1 --1 1 

10 2.43 1.25 0.5 70 1 --1 --1 1 

11 1.78 2.5 0.5 70 --1 1 --1 1 

12 2.43 2.5 0.5 70 1 1 --1 1 

13 1.78 1.25 1.0 70 --1 --1 1 1 

14 2.43 1.25 1.0 70 1 --1 1 1 

15 1.78 2.5 1.0 70 --1 1 1 1 

16 2.43 2.5 1.0 70 1 1 1 1 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 3: Characterization Results of the Support and the Catalysts 

Catalyst 
Metallic content 

 (%p/p) 

Calcination 

temperature (ºC) 

BET area 

(m2/g) 

γ-Al2O3(I) -- -- 190 

γ-Al2O3(II) -- -- 200* 

Haldor-Topsoe  52% CuO/25% ZnO -- 66 

Engelhard  12.5% CuO/0.3% NiO -- 210 

Fe2O3/Al2O3(I) 5% Fe2O3/Al2O3 900  142 

CuO/Al2O3(I) 5% CuO/Al2O3 900  187 

NiO/Al2O3(I) 5% NiO/Al2O3 900 186 

ZnO/Al2O3(I) 5% ZnO/Al2O3 900  190 

CuO/Al2O3(II) 2.5% CuO/Al2O3 900  170 

CuO/Al2O3(II) 1.25% CuO/Al2O3 900  133 

*According to the manufacturer 

 

 

Table 4: pH values and the end of catalytic reactions 

Catalyst pH* 

Haldor-Topsoe  10 

Engelhard  9.8 

Fe2O3/Al2O3(I) 7.8 

CuO/Al2O3(I) 7.6 

NiO/Al2O3(I) 7.3 

ZnO/Al2O3(I) 7.4 

*Remained almost constant during 240 min of reaction 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 5: Variables values at the end of the reaction (240 min of reaction) 

Treatment 

(tc) 

TOC Aromatic COD Color H2O2  

pH* 

η  

(% reduction) 
Decomposed 

(g/L) 

TOC/H2O2 COD/H2O2 

1 19 25 29 69 1.33 7.5 266 501 

2 19 35 24 83 2.05 7.2 170 347 

3 23 28 23 76 1.57 7.4 212 456 

4 29 27 27 60 2.04 7.1 151 334 

5 23 26 29 58 1.67 7.6 199 397 

6 25 30 29 73 2.18 7.5 149 303 

7 22 15 24 50 1.75 7.4 194 405 

8 25 31 30 75 2.32 7.5 140 282 

9 26 62 35 82 1.78 7.2 182 338 

10 27 77 29 91 2.29 7.2 140 290 

11 37 71 49 91 1.78 7.2 153 267 

12 44 86 52 95 2.42 7.8 101 184 

13 26 51 30 64 1.78 7.5 181 371 

14 30 68 34 77 2.43 7.2 124 252 

15 37 66 54 83 1.78 7.5 153 285 

16 44 76 56 89 2.43 7.8 99 175 

* Remained almost constant during 240 min of reaction 

Table 6: Effect of significant factors and their levels on TOC reduction (%), aromatic compounds reduction 

(%), and COD reduction (%). 

Factor Level 
% of Reduction 

TOC Aromatic COD 

Temperature + 43 70 48 

Temperature -- 33.5 31 37.5 

H2O2 + 33 52 37 

H2O2 -- 25 42 31 

Active phase + 28 58.1 36 

Active phase -- 23 57.8 29 

Catalyst mass + 24.1 32 32.5 

Catalyst mass -- 23.8 52 33 
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