46 research outputs found

    Assessing the variability of soil nitrogen mineralization

    Get PDF
    Doctor of PhilosophyDepartment of AgronomyCharles W. RiceVariable N fertilizer application recommendations would benefit from crediting the N that will be mineralized and available to the crop during the growing season. During the 1994 and 1995 growing season, the spatial and temporal pattern of N mineralization was assessed on two central Kansas corn fields. Net N mineralization was measured in the field using a buried bag and a resin core method. A 60 m sampling grid was established on the field and the N mineralization was measured at each grid point. The field N mineralization measured was then compared to three lab incubation (14 day anaerobic incubation, CO₂ evolved 1 day after rewetting, and N released on autoclaving) measurements to determine if the field N mineralization could be predicted by a laboratory test. Nitrogen mineralization in the field was highest in May and declined during the growing seasons. Patches of high N mineralization appeared and disappeared during the season, areas of high and low mineralization were not found in the same areas month after month. The semivariance of the laboratory incubations tended to be smoother near the origin than the field incubations, indicating that the field incubations were subject to more sources of variability (such as microclimatic variations) than the laboratory incubations. Crop yields were not correlated with N mineralization in these fields. Soil moisture appeared to be more important to crop yields than the N contributed by mineralization. In these fields N mineralization does not need to be included in N fertilization recommendations unless the amount of fertilizer applied is much lower than in this study. Finally, a method to estimate the initial δ¹³ C content of a soil is proposed. This method can be used if a location can be found that has had a continuous C₃, a continuous C₄crop and a C₃/ C₄rotation treatment

    High temperatures and low soil moisture synergistically reduce switchgrass yields from marginal field sites and inhibit fermentation

    Get PDF
    ‘Marginal lands’ are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018–2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central–Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore