49 research outputs found

    When is a hydrological model sufficiently calibrated to depict flow preferences of riverine species?

    Get PDF
    Riverine species have adapted to their environment, particularly to the hydrological regime. Hydrological models and the knowledge of species preferences are used to predict the impact of hydrological changes on species. Inevitably, hydrological model performance impacts how species are simulated. From the example of macroinvertebrates in a lowland and a mountainous catchment, we investigate the impact of hydrological model performance and the choice of the objective function based on a set of 36 performance metrics for predicting species occurrences. Besides species abundance, we use the simulated community structure for an ecological assessment as applied for the Water Framework Directive. We investigate when a hydrological model is sufficiently calibrated to depict species abundance. For this, we postulate that performance is not sufficient when ecological assessments based on the simulated hydrology are significantly different (analysis of variance, p < .05) from the ecological assessments based on observations. The investigated range of hydrological model performance leads to considerable variability in species abundance in the two catchments. In the mountainous catchment, links between objective functions and the ecological assessment reveal a stronger dependency of the species on the discharge regime. In the lowland catchment, multiple stressors seem to mask the dependence of the species on discharge. The most suitable objective functions to calibrate the model for species assessments are the ones that incorporate hydrological indicators used for the species prediction

    Modeling the influence of climate on groundwater flow and heat regime in Brandenburg (Germany)

    Get PDF
    This study investigates the decades-long evolution of groundwater dynamics and thermal field in the North German Basin beneath Brandenburg (NE Germany) by coupling a distributed hydrologic model with a 3D groundwater model. We found that hydraulic gradients, acting as the main driver of the groundwater flow in the studied basin, are not exclusively influenced by present-day topographic gradients. Instead, structural dip and stratification of rock units and the presence of permeability contrasts and anisotropy are important co-players affecting the flow in deep seated saline aquifers at depths &gt;500 m. In contrast, recharge variability and anthropogenic activities contribute to groundwater dynamics in the shallow (&lt;500 m) freshwater Quaternary aquifers. Recharge fluxes, as derived from the hydrologic model and assigned to the parametrized regional groundwater model, reproduce magnitudes of recorded seasonal groundwater level changes. Nonetheless, observed instances of inter-annual fluctuations and a gradual decline of groundwater levels highlight the need to consider damping of the recharge signal and additional sinks, like pumping, in the model, in order to reconcile long-term groundwater level trends. Seasonal changes in near-surface groundwater temperature and the continuous warming due to conductive heat exchange with the atmosphere are locally enhanced by forced advection, especially in areas of high hydraulic gradients. The main factors controlling the depth of temperature disturbance include the magnitude of surface temperature variations, the subsurface permeability field, and the rate of recharge. Our results demonstrate the maximum depth extent and the response times of the groundwater system subjected to non-linear interactions between local geological variability and climate conditions

    Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae

    Get PDF
    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed

    Если человечество не изменит концепцию своего развития, оно погибнет

    Get PDF
    Сложная современная политическая, социально-экономическая, межнациональная, религиозная и пр. ситуация в мире требует от интеллектуальной элиты и особенно от политиков, ученых обществоведов, экономистов сформировать и предложить новую концепцию развития мира.Складна сучасна політична, соціально-економічна, міжнаціональна, релігійна та ін. ситуація в суспільстві вимагає від інтелектуальної еліти і особливо від політиків, вчених суспільствознавців, економістів сформувати та запропонувати нову концепцію розвитку суспільства.Complicated modern political, socio-economic, international, religious and other situations in the world call on all the brainpower and especially policy-makers, scholars, social scientists, economists to elaborate and offer a new concept of the world development

    Analisis Faktor-Faktor yang Memengaruhi Tingkat Kepatuhan Wajib Pajak Orang Pribadi di Lingkungan Kantor Pelayanan Pajak Pratama, Tigaraksa Tangerang

    Full text link
    Tax collection is not an easy matter. Active participation from the tax authorities also requires the willingness of the taxpayer. A public reaction can be seen from the taxpayer\u27s willingness to pay taxes. Willingness and awareness to pay taxes represent a value contributed by someone (which has been determined by regulation). Tax is used to finance public expenditures without any direct benefit. Taxpayer\u27s awareness about taxation functions as state funding is needed to improve tax compliance and to determine the level of tax compliance in implementing their tax obligations. Limitation of the scope of this study is the effect of the level of awareness of paying taxes, taxpayer\u27s understanding about tax benefits, tax penalties, and understanding of service quality to the tax authorities of individual taxpayer compliance in the fulfillment of tax obligations, as well as restricted to data obtained through questionnaires received and filled by the individual taxpayer of Tigaraksa Pratama Tax Office area. Data were obtained through questionnaire and processed and analyzed using parametric statistical tests and multiple linear regression with 4 independent variables and one dependent variable resulted in the conclusion that the factors that most influence taxpayer compliance in carrying out its tax liability is the use of sanctions against taxpayers who do not carry out its obligations under applicable legislation

    Causative classification of river flood events

    Get PDF
    A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large‐scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph‐based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space–time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Megafloods in Europe can be anticipated from observations in hydrologically similar catchments

    Get PDF
    Megafloods that far exceed previously observed records often take citizens and experts by surprise, resulting in extremely severe damage and loss of life. Existing methods based on local and regional information rarely go beyond national borders and cannot predict these floods well because of limited data on megafloods, and because flood generation processes of extremes differ from those of smaller, more frequently observed events. Here we analyse river discharge observations from over 8,000 gauging stations across Europe and show that recent megafloods could have been anticipated from those previously observed in other places in Europe. Almost all observed megafloods (95.5%) fall within the envelope values estimated from previous floods in other similar places on the continent, implying that local surprises are not surprising at the continental scale. This holds also for older events, indicating that megafloods have not changed much in time relative to their spatial variability. The underlying concept of the study is that catchments with similar flood generation processes produce similar outliers. It is thus essential to transcend national boundaries and learn from other places across the continent to avoid surprises and save lives

    Climate change impacts model parameter sensitivity-implications for calibration strategy and model diagnostic evaluation

    No full text
    Hydrological models are useful tools for exploring the impact of climate change. To prioritize parameters for calibration and to evaluate hydrological model functioning, sensitivity analysis can be conducted. Parameter sensitivity, however, varies over climate, and therefore climate change could influence parameter sensitivity. In this study we explore the change in parameter sensitivity for the mean discharge and the timing of the discharge, within a plausible climate change rate. We investigate whether changes in sensitivity propagate into the calibration strategy and diagnostically compare three hydrological models based on the sensitivity results. We employed three frequently used hydrological models (SAC, VIC, and HBV) and explored parameter sensitivity changes across 605 catchments in the United States by comparing GCM(RCP8.5)-forced historical and future periods. Consistent among all hydrological models and both for the mean discharge and the timing of the discharge is that the sensitivity of snow parameters decreases in the future. Which other parameters increase in sensitivity is less consistent among the hydrological models. In 45 % to 55 % of the catchments, dependent on the hydrological model, at least one parameter changes in the future in the top-5 most sensitive parameters for mean discharge. For the timing, this varies between 40 % and 88 %. This requires an adapted calibration strategy for long-term projections, for which we provide several suggestions. The disagreement among the models on the processes that become more relevant in future projections also calls for a strict evaluation of the adequacy of the model structure for long-term simulations
    corecore