293 research outputs found

    Head and Neck Mesenchymal Tumors with Kinase Fusions:A Report of 15 Cases with Emphasis on Wide Anatomic Distribution and Diverse Histologic Appearance

    Get PDF
    Mesenchymal tumors harboring various kinase fusions were recently recognized as emerging entities mainly in the soft tissues. We herein investigate the clinicopathologic and molecular characteristics of head and neck mesenchymal tumors harboring kinase fusions. The study cohort included 15 patients with a median age of 13 years (ranging from congenital to 63 y). The kinase genes involved in descending order were NTRK1 (n=6), NTRK3 (n=5), BRAF (n=2), and 1 each with MET, and RET. The anatomic locations were broad involving all tissue planes, including skin (n=4), intraosseous (n=4), major salivary glands (n=2), sinonasal tract (n=2), soft tissue of face or neck (n=2), and oral cavity (n=1). The histologic spectrum ranged from benign to high grade, in descending order including tumors resembling malignant peripheral nerve sheath tumor (MPNST)-like, fibrosarcoma (infantile or adult-type), lipofibromatosis-like neural tumor (LPFNT), inflammatory myofibroblastic tumor-like, and a novel phenotype resembling myxoma. Perivascular hyalinization/stromal keloid-like collagen bands and staghorn vasculature were common features in MPNST-like and LPFNT-like tumors. Two tumors (1 each with NTRK1 or BRAF rearrangement) were classified as high grade. By immunohistochemistry, S100 and CD34 positivity was noted in 71% and 60%, frequently in MPNST-like and LPFNT-like phenotypes. Pan-TRK was a sensitive marker for NTRK-translocated tumors but was negative in tumor with other kinase fusions. One patient with a high-grade tumor developed distant metastasis. Molecular testing for various kinase fusions should be considered for S100+/CD34+ spindle cell neoplasms with perivascular hyalinization and staghorn vessels, as pan-TRK positivity is seen only in NTRK fusions.</p

    Independent Eigenstates of Angular Momentum in a Quantum N-body System

    Get PDF
    The global rotational degrees of freedom in the Schr\"{o}dinger equation for an NN-body system are completely separated from the internal ones. After removing the motion of center of mass, we find a complete set of (2+1)(2\ell+1) independent base functions with the angular momentum \ell. These are homogeneous polynomials in the components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not appear explicitly. Any function with given angular momentum and given parity in the system can be expanded with respect to the base functions, where the coefficients are the functions of the internal variables. With the right choice of the base functions and the internal variables, we explicitly establish the equations for those functions. Only (3N-6) internal variables are involved both in the functions and in the equations. The permutation symmetry of the wave functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys. Rev. A 64, 0421xx (Oct. 2001

    Purity of Gaussian states: measurement schemes and time-evolution in noisy channels

    Get PDF
    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme is tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.Comment: 9 Pages, 6 Figures; minor errors correcte

    Frequency Domain Effect of a Hysteresis Suppression System with Inverse Preisach Model Based Control

    Get PDF
    The extended Preisach model is used extensively in precision control for its ability to model and thus can be used to suppress the hysteresis phenomenon. Although an inverse model based on the classical Preisach model entails a very high level of computational complexity, recent advances in computer technology has enabled real-time implementation of such models. The extended Preisach model calculates the hysteresis action by fitting the - table in the Preisach model to a surface. One can then calculate the amount of extension and retraction simply by searching for the parameters on the surface. This paper proposes a real-time high speed implementation of a model-based hysteresis elimination control. The experimental results show that the proposed method produces a smaller tracking error with a smooth system output

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore