102 research outputs found

    Schwarzschild black holes can wear scalar wigs

    Full text link
    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review Letter

    Estimation of Transition Metal Nitride Surface Plasmon Refractometer Sensitivity

    Get PDF
    We numerically investigate the sensitivity of surface plasmon sensors using transition metal nitrides instead of noble metals, such as silver and gold. These alternative metals present improved thermal and mechanical properties that support the design of better sensors for harsh environment. The results show that titanium nitride and zirconium nitride are viable alternatives to silver as the sensitivity of sensors using these metals is better than sensors using silver

    Analysis and design of a hybrid optical fiber refractometer for large dynamic range measurements

    Get PDF
    A fiber refractometer with large dynamic range from 1.316 to 1.61 RIU has been realized using a hybrid configuration of a single-mode fiber (SMF) coupled to a stripped-cladding multimode fiber (MMF) as sensing element. An extended analysis of the diffraction principle of a Gaussian beam is specifically developed for this sensor configuration to determine the injected power density into the MMF which, when subsequently combined with ray optics, analytical wave optics and Fresnel equations, enables the sensor response to be comprehensively estimated. Simulation results have been experimentally corroborated to very high agreement for a 2-cm and a 5-cm decladded section of multimode fiber used as the sensing element. The results show, for the shorter sensor (2 cm), a very high sensitivity of ~ -250 a.u./RIU being achieved in the Zone II operating regime, i.e. for indices between the cladding and core indices together with a resolution of 2.76 × 10 -6 RIU being attained. In addition, the developed models have been used to accurately predict the response of sensing elements of various lengths, hence demonstrating the potential capability of this research to be exploited for optimizing bespoke design of fiber refractometers of any arbitrary sensing lengths or dimensions. As an example, we present the design of a refractometer achieving a maximum sensitivity of 300 a.u./RIU with a potential resolution of 2.26 × 10 -6 RIU

    Genome sequencing of Xanthomonas axonopodis pv. phaseoli CFBP4834-R reveals that flagellar motility is not a general feature of xanthomonads.

    Full text link
    Xanthomonads are plant-associated bacteria that establish neutral, commensal or pathogenic relationships with plants. The list of common characteristics shared by all members of the genus Xanthomonas is now well established based on the entire genome sequences that are currently available and that represent various species, numerous pathovars of X. axonopodis (sensu Vauterin et al., 2000), X. oryzae and X. campestris, and many strains within some pathovars. These ?-proteobacteria are motile by a single polar flagellum. Motility is an important feature involved in biofilm formation, plant colonization and hence considered as a pathogenicity factor. X. axonopodis pv. phaseoli var. fuscans (Xapf) is one of the causal agents of common bacterial blight of bean and 4834-R is a highly aggressive strain of this pathogen that was isolated from a seed-borne epidemic in France in 1998. We obtained a high quality assembled sequence of the genome of this strain with 454-Solexa and 2X Sanger sequencing. Housekeeping functions are conserved in this genome that shares core characteristics with genomes of other xanthomonads: the six secretion systems which have been described so far in Gram negative bacteria are all present, as well as their ubiquitous substrates or effectors and a rather usual number of mobile elements. Elements devoted to the adaptation to the environment constitute an important part of the genome with a chemotaxis island and dispersed MCPs, numerous two-component systems, and numerous TonB dependent transporters. Furthermore, numerous multidrug efflux systems and functions dedicated to biofilm formation that confer resistance to stresses are also present. An intriguing feature revealed by genome analysis is a long deletion of 35 genes (33 kbp) involved in flagellar biosynthesis. This deletion is replaced by an insertion sequence called ISXapf2. Genes such as flgB to flgL and fliC to fleQ which are involved in the flagellar structure (rod, P- and L-ring, hook, cap and filament) are absent in the genome of strain 4834-R that is not motile. Primers were designed to detect this deletion by PCR in a collection of more than 300 strains representing different species and pathovars of Xanthomonas, and less than 5% of the tested xanthomonads strains were found nonmotile because of a deletion in the flagellum gene cluster. We observed that half of the Xapf strains isolated from the same epidemic than strain 4834-R was non-motile and that this ratio was conserved in the strains colonizing the next bean seed generation. Isolation of such variants in a natural epidemic reveals that either flagellar motility is not a key function for fitness or that some complementation occurs within the bacterial population. (Résumé d'auteur

    Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows

    Get PDF
    © 2014, Springer-Verlag Berlin Heidelberg. We present the results of laboratory experiments on the behaviour of sustained, dense granular flows in a horizontal flume, in which high-gas pore pressure was maintained throughout the flow duration by continuous injection of gas through the flume base. The flows were fed by a sustained (0.5–30 s) supply of fine (75 ± 15 μm) particles from a hopper; the falling particles impacted an impingement surface at concentrations of ~3 to 45 %, where they densified rapidly to generate horizontally moving, dense granular flows. When the gas supplied through the flume base was below the minimum fluidization velocity of the particles (i.e. aerated flow conditions), three flow phases were identified: (i) an initial dilute spray of particles travelling at 1–2 m s−1, followed by (ii) a dense granular flow travelling at 0.5–1 m s−1, then by (iii) sustained aggradation of the deposit by a prolonged succession of thin flow pulses. The maximum runout of the phase 2 flow was linearly dependent on the initial mass flux, and the frontal velocity had a square-root dependence on mass flux. The frontal propagation speed during phase 3 had a linear relationship with mass flux. The total mass of particles released had no significant control on either flow velocity or runout in any of the phases. High-frequency flow unsteadiness during phase 3 generated deposit architectures with progradational and retrogradational packages and multiple internal erosive contacts. When the gas supplied through the flume base was equal to the minimum fluidization velocity of the particles (i.e. fluidized flow conditions), the flows remained within phase 2 for their entire runout, no deposit formed and the particles ran off the end of the flume. Sustained granular flows differ significantly from instantaneous flows generated by lock-exchange mechanisms, in that the sustained flows generate (by prolonged progressive aggradation) deposits that are much thicker than the flowing layer of particles at any given moment. The experiments offer a first attempt to investigate the physics of the sustained pyroclastic flows that generate thick, voluminous ignimbrites

    Phonons in Slow Motion: Dispersion Relations in Ultra-Thin Si Membranes

    Full text link
    We report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as \sim 8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than one order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano and micro-electromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.Comment: 5 page

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • …
    corecore