888 research outputs found

    Innovations in the Art of Microneurosurgery for Reaching Deep-Seated Cerebral Lesions

    Get PDF
    Deep-seated cerebral lesions have fascinated and frustrated countless surgical innovators since the dawn of the microneurosurgical era. To determine the optimal approach, the microneurosurgeon must take into account the characteristics and location of the pathological lesion as well as the operator’s range of technical expertise. Increasingly, microneurosurgeons must select between multiple operative corridors that can access to the surgical target. Innovative trajectories have emerged for many indications that provide more flexible operative angles and superior exposure but result in longer working distances and more technically demanding maneuvers. In this article, we highlight 4 innovative surgical corridors and compare their strengths and weaknesses against those of more conventional approaches. Our goal is to use these examples to illustrate the following principles of microneurosurgical innovation: (1) discover more efficient and flexible exposures with superior working angles; (2) ensure maximal early protection of critical neurovascular structures; and (3) effectively handle target pathology with minimal disruption of normal tissues

    Preclinical single photon emission computed tomography of alpha particle-emitting radium-223

    Get PDF
    Objective: Dose optimization and pharmacokinetic evaluation of α-particle emitting radium-223 dichloride (223RaCl2) by planar γ-camera or single photon emission computed tomography (SPECT) imaging are hampered by the low photon abundance and injected activities. In this study, we demonstrate SPECT of 223Ra using phantoms and small animal in vivo models. Methods: Line phantoms and mice bearing 223Ra were imaged using a dedicated small animal SPECT by detecting the low-energy photon emissions from 223Ra. Localization of the therapeutic agent was verified by whole-body and whole-limb autoradiography and its radiobiological effect confirmed by immunofluorescence. Results: A state-of-the-art commercial small animal SPECT system equipped with a highly sensitive collimator enables collection of sufficient counts for three-dimensional reconstruction at reasonable administered activities and acquisition times. Line sources of 223Ra in both air and in a water scattering phantom gave a line spread function with a full-width-at-half-maximum of 1.45 mm. Early and late-phase imaging of the pharmacokinetics of the radiopharmaceutical were captured. Uptake at sites of active bone remodeling was correlated with DNA damage from the α particle emissions. Conclusions: This work demonstrates the capability to noninvasively define the distribution of 223RaCl2, a recently approved α-particle-emitting radionuclide. This approach allows quantitative assessment of 223Ra distribution and may assist radiation-dose optimization strategies to improve therapeutic response and ultimately to enable personalized treatment planning

    Virtual Exploration of Safe Entry Zones in the Brainstem: Comprehensive Definition and Analysis of the Operative Approach

    Get PDF
    Background Detailed and accurate understanding of intrinsic brainstem anatomy and the inter-relationship between its internal tracts and nuclei and external landmarks is of paramount importance for safe and effective brainstem surgery. Using anatomical models can be an important step in sharpening such understanding. Objective To show the applicability of our developed virtual 3D model in depicting the safe entry zones (SEZs) to the brainstem. Methods Accurate 3D virtual models of brainstem elements were created using high-resolution magnetic resonance imaging and computed tomography to depict brainstem SEZs. Results All the described SEZs to different aspects of the brainstem were successfully depicted using our 3D virtual models. Conclusions The virtual models provide an immersive experience of brainstem anatomy, allowing users to understand the intricacies of the microdissection that is necessary to appropriately traverse the brainstem nuclei and tracts toward a particular target. The models provide an unparalleled learning environment for illustrating SEZs into the brainstem that can be used for training and research

    The Third wave in globalization theory

    Get PDF
    This essay examines a proposition made in the literature that there are three waves in globalization theory—the globalist, skeptical, and postskeptical or transformational waves—and argues that this division requires a new look. The essay is a critique of the third of these waves and its relationship with the second wave. Contributors to the third wave not only defend the idea of globalization from criticism by the skeptics but also try to construct a more complex and qualified theory of globalization than provided by first-wave accounts. The argument made here is that third-wave authors come to conclusions that try to defend globalization yet include qualifications that in practice reaffirm skeptical claims. This feature of the literature has been overlooked in debates and the aim of this essay is to revisit the literature and identify as well as discuss this problem. Such a presentation has political implications. Third wavers propose globalist cosmopolitan democracy when the substance of their arguments does more in practice to bolster the skeptical view of politics based on inequality and conflict, nation-states and regional blocs, and alliances of common interest or ideology rather than cosmopolitan global structures

    Reinventing grounded theory: some questions about theory, ground and discovery

    Get PDF
    Grounded theory’s popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed—‘theory,’ ‘ground’ and ‘discovery’—which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory, these notions—embodied in continuing reinventions of grounded theory—constrain and distort qualitative inquiry, and that what is contrived is not in fact theory in any meaningful sense, that ‘ground’ is a misnomer when talking about interpretation and that what ultimately materializes following grounded theory procedures is less like discovery and more akin to invention. The procedures admittedly provide signposts for qualitative inquirers, but educational researchers should be wary, for the significance of interpretation, narrative and reflection can be undermined in the procedures of grounded theory

    In vivo molecular dissection of the effects of HIV-1 in active tuberculosis

    Get PDF
    Author Summary HIV-1 infected people have substantially increased risk of tuberculosis (TB) leading to a large burden of disease worldwide. We aimed to investigate how HIV-1 causes this effect by altering human immune responses. We measured the products of all immune genes at injection sites of sterilized TB under the skin, in order to look for differences between TB patients with and without HIV-1. We found that the predominant effect of early HIV-1 infection was to diminish a component of immune responses that contributes to prevention of harmful inflammation. In more advanced HIV-1, we found almost complete absence of any immune response to TB except for immune activity which is normally part of our defence against viruses, but may also weaken immune protection against TB. In some patients, TB becomes apparent after starting treatment for HIV-1. In these patients we found that most immune responses had recovered to normal levels, but that one type of response sometimes associated with asthma and allergies was exaggerated. Our findings provide new insights into how HIV-1 can affect immune responses and changes to the immune system that are associated with risk of TB, which will inform the development of new strategies to improve protective immunity

    Rapid synchronous type 1 IFN and virus-specific T cell responses characterize first wave non-severe SARS-CoV-2 infections

    Get PDF
    Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1–2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore