81 research outputs found

    Endothelial dysfunction and vascular disease

    Get PDF
    The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO). The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDHF-mediated responses). Endothelium-dependent relaxations involve both pertussis toxin-sensitive G i (e.g. responses to serotonin and thrombin) and pertussis toxin-insensitive G q (e.g. adenosine diphosphate and bradykinin) coupling proteins. The release of NO by the endothelial cell can be up-regulated (e.g. by oestrogens, exercise and dietary factors) and down-regulated (e.g. oxidative stress, smoking and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively loose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and causing endothelium-dependent hyperpolarizations), endothelial cells also can evoke contraction (constriction) of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factor (EDCF). Most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells. EDCF-mediated responses are exacerbated when the production of NO is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients. © 2008 Scandinavian Physiological Society.postprin

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Sepsis de origen infrecuente en una mujer anciana

    No full text
    Mujer de 85 años con antecedentes de diabetes mellitus tipo 2 y neoplasia de colon intervenida hace3 años. Ingresa por un cuadro febril sin foco. Seishoras después comienza con dolor intenso a nivelhipogástrico y resistencia abdominal. La analítica escompatible con una sepsis grave con coagulopatia

    Distinction between signaling mechanisms in lipid rafts vs. caveolae

    No full text
    The relative importance of lipid rafts vs. specialized rafts termed caveolae to influence signal transduction is not known. Here we show that in cells lacking caveolae, the dually acylated protein, endothelial nitric oxide synthase (eNOS), localizes to cholesterol-rich lipid raft domains of the plasma membrane. In these cells, expression of caveolin-1 (cav-1) stimulates caveolae biogenesis, promotes the interaction of cav-1 with eNOS, and the inhibition of NO release from cells. Interestingly, in cells where cav-1 does not drive caveolae assembly, despite equal levels of cav-1 and eNOS and localization of both proteins to raft domains of the plasmalemma, the physical interaction of eNOS with cav-1 is dramatically less resulting in less inhibition of NO release. Thus, cav-1 concentrated in caveolae, not in rafts, is in closer proximity to eNOS and is necessary for negative regulation of eNOS function, thereby providing the first clear example of spatial regulation of signaling in this organelle that is distinct from raft domains

    Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis

    Get PDF
    The functions of caveolae and/or caveolins in intact animals are beginning to be explored. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in several postnatal vascular paradigms. First, increasing levels of Cav-1 do not increase caveolae number in the endothelium in vivo. Second, despite a lack of quantitative changes in organelle number, endothelial-specific expression of Cav-1 impairs endothelial nitric oxide synthase activation, endothelial barrier function, and angiogenic responses to exogenous VEGF and tissue ischemia. In addition, VEGF-mediated phosphorylation of Akt and its substrate, endothelial nitric oxide synthase, were significantly reduced in VEGF-treated Cav-1 transgenic mice, compared with WT littermates. The inhibitory effect of Cav-1 expression on the Akt-endothelial nitric oxide synthase pathway was specific because VEGF-stimulated phosphorylation of mitogen-activated protein kinase (ERK1/2) was elevated in the Cav-1 transgenics, compared with littermates. These data strongly support the idea that, in vivo, Cav-1 may modulate signaling pathways independent of its essential role in caveolae biogenesis
    corecore