183 research outputs found

    A petrological, mineralogical and chemical analysis of the lunar mare basalt meteorites LaPaz Icefield 02205, 02224 and 02226

    Get PDF
    LaPaz Icefield (LAP) 02205, 02226, and 02224 are paired stones of a crystalline basaltic lunar meteorite with a low-Ti (3.21–3.43% TiO2) low-Al (9.93–10.45% Al2O3), and low-K (0.11–0.12% K2O) composition. They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late-stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar-wind-implanted gases. The stones have a comparable major element composition and petrography to low-Ti, low-Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt

    Inference on the Nature and the Mass of Earth's Late Veneer from Noble Metals and Gases

    Get PDF
    Noble metals and gases are very sensitive to the late accretion to the Earth of asteroids and comets. We present mass balance arguments based on these elements that indicate that 0.7E22-2.7E22 kg of extraterrestrial bodies struck the Earth after core formation and that comets comprised less than 1E-5 by mass of the impacting population. These results imply that the dynamics of asteroids and comets changed drastically with time and that biogenic elements and prebiotic molecules were not delivered to the Earth by comets but rather by carbonaceous asteroids.Comment: 10 pages, 2 figures, 1 table, submitted to JG

    Lunar meteorite regolith breccias: an in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust

    Get PDF
    Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA-ICP-MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#10), and have low incompatible trace element (ITE) concentrations (i.e., typically 10 ppm Sm), High Magnesium Suite (typically >70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios <2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP-poor and Sc-rich, and represent mixing between feldspathic lithologies and low-Ti or very low-Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer-Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low-Ti basalt contribution

    Petrogenesis of lavas from Detroit Seamount: Geochemical differences between Emperor Chain and Hawaiian volcanoes

    Get PDF
    The Hawaiian Ridge and Emperor Seamount Chain define a hot spot track that provides an 80 Myr record of Hawaiian magmatism. Detroit Seamount (∼76 to 81 Ma) is one of the oldest Emperor Seamounts. Volcanic rocks forming this seamount have been cored by the Ocean Drilling Program at six locations. Only tholeiitic basalt occurs at Site 884 on the eastern flank and only alkalic basalt, probably postshield lavas, occurs at Sites 883 and 1204 on the summit plateau. However, at Site 1203 the basement core (453 m penetration) includes four thick flows of pahoehoe alkalic basalt underlying ∼300 m of volcaniclastic rocks interbedded with submarine erupted tholeiitic basalt. The geochemical characteristics of these alkalic lavas indicate that phlogopite was important in their petrogenesis; they may represent preshield stage volcanism. The surprising upward transition from subaerial to submarine eruptives implies rapid subsidence of the volcano, which can be explained by the inferred near-ridge axis setting of the seamount at ∼80 Ma. A near-ridge axis setting with thin lithosphere is also consistent with a shallow depth of melt segregation for Detroit Seamount magmas relative to Hawaiian magmas, and the significant role for plagioclase fractionation as the Detroit Seamount magmas evolved in the crust. An important long-term trend along the hot spot track is that 87Sr/86Sr decreases in lavas erupted from ∼40 to 80 Ma. Tholeiitic basalt at Site 884 on Detroit Seamount is the extreme and overlaps with the 87Sr/86Sr-143Nd/144Nd field of Pacific mid-ocean ridge basalts (MORB). Complementary evidence for a depleted component in Detroit Seamount lavas is that relative to Hawaiian basalt, Detroit Seamount lavas have lower abundances of incompatible elements at a given MgO content. These lavas, especially from Sites 883 and 884, trend to extremely unradiogenic Pb isotopic ratios which are unlike MORB erupted at the East Pacific Rise. A component with relatively low 87Sr/86Sr and 206Pb/204Pb is required. Lavas erupted from a spreading center in the Garrett transform fault, 13°28′S on the East Pacific Rise, have this characteristic. A plausible hypothesis is mixing of a plume-related component with a component similar to that expressed in lavas from the Garrett transform fault. However, basaltic glasses from Detroit Seamount also have relatively high Ba/Th, a distinctive characteristic of Hawaiian lavas. We argue that all Detroit Seamount lavas, including those from Site 884, are related to the Hawaiian hot spot. Rejuvenated stage Hawaiian lavas also have high Ba/Th and define a trend to low 87Sr/86Sr and 206Pb/204Pb. We speculate that rejuvenated stage lavas and Detroit Seamount lavas sample a depleted mantle component, intrinsic to the plume, over the past 80 Myr

    Manganese-rich olivines: Identification from spectral reflectance properties

    Get PDF
    Reflectance spectra of manganese-rich olivines were examined to determine which spectral features allow these minerals to be distinguished from forsteritic-fayalitic olivines. The results indicate that manganese-rich olivines can be distinguished on the following bases: Fe2+ M2 absorption band depths are reduced relative to Fe2+ Ml depths, the wavelength position of the Fe2+M2 absorption band is shifted to longer wavelengths(>1.08 μm) for olivines containing between ~10 and 70 mol % Mn2Si04 , and the presence of an isolated Mn2+ transition band near 0.4 μm . The absence of Fe2+ spin forbidden features in the visible wavelength region is not a reliable method for identifying manganese-rich olivines.This work was supported by grants-in-aid of research from the Geological Society of America and Sigma Xi, The Scientific Research Society.This work was supported by grants-in-aid of research from the Geological Society of America and Sigma Xi, The Scientific Research Societyhttps://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JE0249
    corecore