230 research outputs found

    Guest Editor's Preface. SIDGWICK AND THE UNIVERSE: AN INTRODUCTION

    Get PDF
    A SYMPOSIUM ON KATARZYNA DE LAZARI-RADEK AND PETER SINGER, THE POINT OF VIEW OF THE UNIVERSE: SIDGWICK AND CONTEMPORARY ETHIC

    Irrigation and Drainage Systems : Research and Development in the 21st Century

    Get PDF
    One critical problem confronting mankind today is how to manage the intensifying competition for water between expanding urban centres, traditional agricultural activities and in-stream water uses dictated by environmental concerns. In the agricultural sector, the dwindling number of economically attractive sites for large-scale irrigation and drainage projects limits the prospects of increasing the gross cultivated area. Therefore, the required increase in agricultural production will necessarily rely largely on a more accurate estimation of crop water requirements on the one hand, and on major improvements in the construction, operation, management and performance of existing irrigation and drainage systems, on the other. The failings of present systems and the inability to sustainably exploit surface and groundwater resources can be attributed essentially to poor planning, design, system management and development. This is partly due to the inability of engineers, planners and managers to adequately quantify the effects of irrigation and drainage projects on water resources and to use these effects as guidelines for improving technology, design and management. To take full advantage of investments in agriculture, a major effort is required to modernize irrigation and drainage systems and to further develop appropriate management strategies compatible with the financial and socio-economic trends, and the environment. This calls for a holistic approach to irrigation and drainage management and monitoring so as to increase food production, conserve water, prevent soil salinization and waterlogging, and to protect the environment. All this requires, among others, enhanced research and a variety of tools such as water control and regulation equipment, remote sensing, geographic information systems, decision support systems and models, as well as field survey and evaluation techniques. To tackle this challenge, we need to focus on the following issues: \u2022 affordability with respect to the application of new technologies; \u2022 procedures for integrated planning and management of irrigation and drainage systems; \u2022 analysis to identify causes and effects constraining irrigation and drainage system performance; \u2022 evapotranspiration and related calculation methods; \u2022 estimation of crop water requirements; \u2022 technologies for the design, construction and modernization of irrigation and drainage systems; \u2022 strategies to improve irrigation and drainage system efficiency; \u2022 environmental impacts of irrigation and drainage and measures for creating and maintaining sustainability; \u2022 institutional strengthening, proper financial assessment, capacity building, training and education. Copyrigh

    Discharge analysis for a system approach to river basin development with Subak irrigation schemes as a culture heritage in Bali

    Get PDF
    Paddy terraces in Baliare important cultural landscapes.  Traditionally, the flow within a river basin has been managed using a traditional technology called Subak irrigation.  These schemes are based on the cropping patterns and indigenous water management, which are organized by the respective Subak associations.  Unfortunately, this traditional technology is facing challenges: water shortage and competition with other water users.  In order to sustain agriculture production of Subak irrigation schemes in the Yeh Ho River Basin, the available discharge in Yeh Ho River was analyzed in this study in light of the supply to the Subak irrigation schemes within the river basin.  By using the Weibull formula, the historic supply data of several diversion weirs were analyzed independently.  Based on this analysis it was possible to determine the water balance of the Subak irrigation schemes behind each diversion weir.  Therefore a system approach was developed based on the managed flows within the river basin and the characteristics of the Subak irrigation schemes.  The conclusion is that the discharge in the river will remain the most important factor to sustain the characteristic paddy terraces of these Subak irrigation schemes

    USCID fourth international conference

    Get PDF
    Presented at the Role of irrigation and drainage in a sustainable future: USCID fourth international conference on irrigation and drainage on October 3-6, 2007 in Sacramento, California.Includes bibliographical references.The irrigation network of this study consists of three branch canals (the Machai Branch Canal, the Pehure High Level Canal (PHLC) and the Maira Branch Canal) connected to each other in such a way that the Machai Branch and the PHLC feed the Maira Branch Canal for providing a reliable irrigation service. The Machai Branch Canal has limited and erratic discharges and cannot fulfill the peak water requirements of the Maira Branch Canal and therefore any deficiency in the supplies to the Maira Branch Canal is automatically compensated by the PHLC. PHLC is an automatic canal and has been equipped with Proportional Integral Derivative (PID) discharge controllers at its head whereas the Machai Branch Canal has fixed supply based operations. The Maira Branch Canal is also an automatically downstream controlled irrigation canal, which is operated according to crop water requirements using Crop Based Irrigation Operations (CBIO) model. Under this scheme of operations the flows remain changing most of the time following the crop water requirements curve. The frequent changes in discharges keep the canal in unsteady state conditions, which affect the functioning of automatic discharge and water level regulation structures. Efficient system operation is a prerequisite for getting better water productivity and the precise understanding of the behavior of the structures and canal's hydrodynamics against such changes is a key for getting effective system operations. In this paper the canal's hydrodynamic behavior and the automatic structures' functioning have been assessed and suggestions have been provided to fine tune the automatic discharge controllers in order to avoid the oscillatory and abrupt hydrodynamic behavior in the canal. The guidelines have been provided for the operation of the secondary system for achieving smooth and sustainable operations of the canals. In addition to this the effects of any discharge variation in the Machai Branch Canal on the automatic discharge controller's behavior also has been assessed

    Nebulized antithrombin limits bacterial outgrowth and lung injury in Streptococcus pneumoniae pneumonia in rats

    Get PDF
    Introduction Disturbed alveolar fibrin turnover is a cardinal feature of severe pneumonia. Clinical studies suggest that natural inhibitors of coagulation exert lung-protective effects via anticoagulant and possibly also anti-inflammatory pathways. Intravenous infusion of the natural anticoagulants increases the risk of bleeding. Local administration may allow for higher treatment dosages and increased local efficacy while at the same time reducing the risk of bleeding. We evaluated the effect of nebulized anticoagulants on pulmonary coagulopathy and inflammation in a rat model of Streptococcus pneumoniae pneumonia. Methods In this randomized controlled in vivo laboratory study rats were challenged intratracheally with S. pneumoniae, inducing pneumonia, and randomized to treatment with normal saline (placebo), recombinant human activated protein C (rh-APC), plasma-derived antithrombin (AT), heparin or danaparoid, by means of nebulization. Results S. pneumoniae infection increased pulmonary levels of thrombin-antithrombin complexes and fibrin degradation products. All nebulized anticoagulants significantly limited pulmonary coagulopathy. None of the agents except danaparoid resulted in changes in systemic coagulopathy. Treatment with plasma-derived AT reduced outgrowth of S. pneumoniae and histopathologic damage in lungs. In vitro experiments confirmed outgrowth was reduced in bronchoalveolar lavage fluid (BALF) from rats treated with plasma-derived AT compared with placebo. Neutralizing of cationic components in BALF diminished the inhibitory effects on bacterial outgrowth of BALF, suggesting a role for cationic antimicrobial proteins. Conclusions Nebulization of anticoagulants attenuates pulmonary coagulopathy during S. pneumoniae pneumonia in rats while only danaparoid affects systemic coagulation. Nebulized plasma-derived AT reduces bacterial outgrowth and exerts significant lung-protective effect

    The Role of Ejecta in the Small Crater Populations on the Mid-Sized Saturnian Satellites

    Full text link
    We find evidence that crater ejecta play an important role in the small crater populations on the Saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (v_min), and (iii) velocities less than v_min. Although the vast majority of mass on each satellite is ejected at speeds less than v_min, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the Saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface) is not yet well understood. Finally, our work provides further evidence for a "shallow" size-frequency distribution (slope index of ~2 for a differential power-law) for comets a few km diameter and smaller. [slightly abbreviated]Comment: Submitted to Icarus. 77 double-spaced pages, including 25 figures and 5 table

    Basic concepts of fluid responsiveness

    Get PDF
    Predicting fluid responsiveness, the response of stroke volume to fluid loading, is a relatively novel concept that aims to optimise circulation, and as such organ perfusion, while avoiding futile and potentially deleterious fluid administrations in critically ill patients. Dynamic parameters have shown to be superior in predicting the response to fluid loading compared with static cardiac filling pressures. However, in routine clinical practice the conditions necessary for dynamic parameters to predict fluid responsiveness are frequently not met. Passive leg raising as a means to alter biventricular preload in combination with subsequent measurement of the change in stroke volume can provide a fast and accurate way to guide fluid management in a broad population of critically ill patients

    Heterogeneous antimicrobial activity in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients

    Get PDF
    Pneumonia is an infection of the lungs, where the alveoli in the affected area are filled with pus and fluid. Although ventilated patients are at risk, not all ventilated patients develop pneumonia. This suggests that the sputum environment may possess antimicrobial activities. Despite the generally acknowledged importance of antimicrobial activity in protecting the human lung against infections, this has not been systematically assessed to date. Therefore, the objective of the present study was to measure antimicrobial activity in broncho-alveolar aspirate ('sputum") samples from patients in an intensive care unit (ICU) and to correlate the detected antimicrobial activity with antibiotic levels, the sputum microbiome, and the respective patients' characteristics. To this end, clinical metadata and sputum were collected from 53 mechanically ventilated ICU patients. The antimicrobial activity of sputum samples was tested against Streptococcus pneumoniae, Staphylococcus aureus and Streptococcus anginosus. Here we show that sputa collected from different patients presented a high degree of variation in antimicrobial activity, which can be partially attributed to antibiotic therapy. The sputum microbiome, although potentially capable of producing antimicrobial agents, seemed to contribute in a minor way, if any, to the antimicrobial activity of sputum. Remarkably, despite its potentially protective effect, the level of antimicrobial activity in the investigated sputa correlated inversely with patient outcome, most likely because disease severity outweighed the beneficial antimicrobial activities.</p

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    • …
    corecore