1,442 research outputs found

    Feasibility and Environmental Implications of Using Waste Motor Oil as Alternative Supplemental Fuel in Contingency Prime Power Generation

    Get PDF
    In an era of strict hazardous material restrictions and intense energy savings projects, DoD has an opportunity for a waste-to-energy initiative by looking to vintage diesel engine technology for inspiration. The idea comes in the form of recycled Waste Motor Oil (WMO) which can be used as a fuel in compression-ignition engines. When mixed at a low blend ratio, WMO can supplement diesel fuels to extend the range of fuel stores for electrical power generating equipment at contingency military bases while simultaneously decreasing the burden on fuel supply chain management and the hazardous waste disposal stream. This research looked at the feasibility of filtering, and then burning WMO blends. It also explored potential drawbacks which can threaten the lifespan of modern diesel engine components. Analytical methods included spectrometry, chromatography, viscometry, electron microscopy, and Gaussian dispersion modeling to study filtering method effectiveness, engine component wear, and air pollution effects. The WMO was diluted with diesel fuel to a point where metal concentrations were reduced to trace amounts which allowed engine exhaust emission levels to remain below permissible exposure levels without the assistance of engine emissions mitigation hardware. DoD can use these results for decisions-making when balancing energy security and environmental implications

    The Role of Ejecta in the Small Crater Populations on the Mid-Sized Saturnian Satellites

    Full text link
    We find evidence that crater ejecta play an important role in the small crater populations on the Saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (v_min), and (iii) velocities less than v_min. Although the vast majority of mass on each satellite is ejected at speeds less than v_min, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the Saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface) is not yet well understood. Finally, our work provides further evidence for a "shallow" size-frequency distribution (slope index of ~2 for a differential power-law) for comets a few km diameter and smaller. [slightly abbreviated]Comment: Submitted to Icarus. 77 double-spaced pages, including 25 figures and 5 table

    Janus and Lunar Trailblazer: Lockheed Martin Deep Space SmallSats for NASA SIMPLEx Missions

    Get PDF
    NASA’s Small Innovative Missions for Planetary Exploration (SIMPLEx) program is a principal investigator-led planetary science program focusing on small spacecraft. In the SIMPLEx-2 opportunity, the cost cap for SIMPLEx missions is approximately 1/10th the cost of the next larger class of planetary exploration missions, the Discovery Program. Unlike Discovery missions, SIMPLEx missions launch as rideshare payloads with other NASA primary missions. Lockheed Martin has developed a science-capable deep space small spacecraft architecture to support two missions selected for the SIMPLEx-2 opportunity: Janus and Lunar Trailblazer. Janus is a two-spacecraft mission to fly by two different binary Near Earth Asteroids, partnered with Dr. Dan Scheeres at the University of Colorado Boulder. Lunar Trailblazer is a lunar orbiter led by Dr. Bethany Ehlmann at Caltech which will map water on the Moon; both have passed PDR and are confirmed for flight. Janus will launch first, in August 2022. A scalable suite of hardware subsystems enables the same low-cost spacecraft architecture to support both missions with a high degree of commonality, despite their disparate mission designs, environments, physical configuration, and science operations. As both missions move through project implementation, the management and engineering teams have learned valuable lessons for developing deep space-capable small spacecraft, adapting from both Earth-orbiting SmallSats and traditional larger planetary exploration missions in the Discovery and New Frontiers program classes. Key lessons learned include the value of early and close coordination between interested science teams and spacecraft providers, the need to tailor the complexity of science investigations to SmallSat spacecraft capabilities, the importance of evaluating component lifetimes against the deep space mission environment, and the challenge of planetary mission design to a rideshare launch. Rideshare missions on planetary launches must meet schedules determined by primary spacecraft with inexorable planetary launch windows and must provide enough propulsion to reach their own destinations which may include planetary orbit insertion or targeting a completely different solar system destination than the primary spacecraft

    The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses

    Get PDF
    This is the published version. Copyright 2001 American Society for Clinical Investigation.The multiligand receptors that form the focus of this Perspective series have expectedly diverse functions, often conforming to potential gaps in the host response to invading pathogens that are not effectively manned by adaptive immunity. For example, the macrophage scavenger receptor (type A) interacts with bacterial cell walls and enhances clearance of Gram-negative bacteria from the circulation (1). Similarly, the macrophage mannose receptor binds mannose-rich carbohydrates typical of many microorganisms, thereby promoting their cellular uptake and disposal (2). The present contribution to the series concerns a member of the immunoglobulin superfamily that differs from the above molecules in that all known ligands in its broad repertoire can be generated endogenously (3). This cell surface protein, called RAGE because it serves as a receptor for nonenzymatically glycated adducts termed “advanced glycation endproducts” (AGEs), also binds β-sheet fibrils characteristic of amyloid; proinflammatory cytokine–like mediators of the S100/calgranulin family; and amphoterin, a nuclear protein sometimes found in the ECM (Table 1). Binding of these ligands to RAGE does not accelerate clearance or degradation but rather begins a sustained period of cellular activation mediated by receptor-dependent signaling. This is the first of several distinctive themes that have emerged from studies of RAGE. Other unusual features of the receptor include its ability to engage classes of molecules, rather than individual ligands, and its enhanced surface expression in environments rich in RAGE ligands. This last point is crucial, since it explains how upregulation of this receptor can contribute to an ascending spiral of RAGE-dependent cellular perturbation. Taken together, these features of RAGE allow the receptor to propagate cellular dysfunction in a number of pathophysiologically relevant situations, most often dictated by the formation and persistence of ligands in the tissues. As described below, these diverse situations range from the complications of diabetes and cellular perturbation in amyloidoses to immune and inflammatory responses and tumor cell behavior

    The Complexity of Sporadic Alzheimer's Disease Pathogenesis: The Role of RAGE as Therapeutic Target to Promote Neuroprotection by Inhibiting Neurovascular Dysfunction

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia. Amyloid plaques and neurofibrillary tangles are prominent pathological features of AD. Aging and age-dependent oxidative stress are the major nongenetic risk factors for AD. The beta-amyloid peptide (Aβ), the major component of plaques, and advanced glycation end products (AGEs) are key activators of plaque-associated cellular dysfunction. Aβ and AGEs bind to the receptor for AGEs (RAGE), which transmits the signal from RAGE via redox-sensitive pathways to nuclear factor kappa-B (NF-κB). RAGE-mediated signaling is an important contributor to neurodegeneration in AD. We will summarize the current knowledge and ongoing studies on RAGE function in AD. We will also present evidence for a novel pathway induced by RAGE in AD, which leads to the expression of thioredoxin interacting protein (TXNIP), providing further evidence that pharmacological inhibition of RAGE will promote neuroprotection by blocking neurovascular dysfunction in AD

    RAGE and Alzheimer’s Disease: A Progression Factor for Amyloid-β-Induced Cellular Perturbation?

    Get PDF
    This is the publisher's version, also available electronically from http://iospress.metapress.com/content/d6621608n32478r2/?genre=article&issn=1387-2877&volume=16&issue=4&spage=833Receptor for Advanced Glycation Endproducts (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules which serves as a receptor for amyloid-β peptide (Aβ) on neurons, microglia, astrocytes, and cells of vessel wall. Increased expression of RAGE is observed in regions of the brain affected by Alzheimer's disease (AD), and Aβ-RAGE interaction in vitro leads to cell stress with the generation of reactive oxygen species and activation of downstream signaling mechanisms including the MAP kinase pathway. RAGE-mediated activation of p38 MAP kinase in neurons causes Aβ-induced inhibition of long-term potentiation in slices of entorhinal cortex. Increased expression of RAGE in an Aβ-rich environment, using transgenic mouse models, accelerates and accentuates pathologic, biochemical, and behavioral abnormalities compared with mice overexpressing only mutant amyloid-β protein precursor. Interception of Aβ interaction with RAGE, by infusion of soluble RAGE, decreases Aβ content and amyloid load, as well as improving learning/memory and synaptic function, in a murine transgenic model of Aβ accumulation. These data suggest that RAGE may be a therapeutic target for AD

    OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    Get PDF
    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023
    corecore