207 research outputs found

    AN INITIAL EVALUATION OF IBI VIZEDIT: AN RSHINY APPLICATION FOR OBTAINING ACCURATE ESTIMATES OF AUTONOMIC REGULATION OF CARDIAC ACTIVITY

    Get PDF
    Photoplethysmogram (PPG) sensors are increasingly used to collect individual heart rate data during laboratory assessments and psychological experiments. PPG sensors are relatively cheap, easy to use, and non-invasive alternatives to the more common electrodes used to produce electrocardiogram recordings. The downside is that these sensors are more susceptible to signal distortion. Often, the most relevant measures for understanding psychological processes that underlie emotions and behaviors are measures of heart rate variability. As with all measures of variability, outliers (i.e., signal artifacts) can have outsized effects on the final estimates; and, given that these scores represent a primary variable of interest in many research contexts, the successful elimination of artefactual points is critical to the ability to make valid inferences with the data. Prior to the development of IBI VizEdit, there was no single, integrated processing and editing pipeline for PPG data. The present pair of studies offers and initial evaluation of the program’s performance. Study 1 is focused on the efficacy of a novel approach to imputing sections of particularly corrupted PPG signal. Study 2 tests the ability of trained editors to reliably use IBI VizEdit as well as the validity of estimates of cardiac activity during a prescribed set of laboratory tasks. Study 1 suggests that the novel imputation approach, under certain conditions and using certain parameterizations may hold promise as a means of accurately imputing missing sections of data. However, Study 1 also clearly demonstrates the need for further refinement and the consideration of alternative implementations. The results from Study 2 indicate that IBI VizEdit can be reliably used by trained editors and that estimates of cardiac activity derived from its output are likely valid

    Vinculin is essential for muscle function in the nematode.

    Full text link

    Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans.

    Get PDF
    Protein disulfide isomerase (PDI) is a multifunctional protein required for many aspects of protein folding and transit through the endoplasmic reticulum. A conserved family of three PDIs have been functionally analysed using genetic mutants of the model organism Caenorhabditis elegans. PDI-1 and PDI-3 are individually nonessential, whereas PDI-2 is required for normal post-embryonic development. In combination, all three genes are synergistically essential for embryonic development in this nematode. Mutations in pdi-2 result in severe body morphology defects, uncoordinated movement, adult sterility, abnormal molting and aberrant collagen deposition. Many of these phenotypes are consistent with a role in collagen biogenesis and extracellular matrix formation. PDI-2 is required for the normal function of prolyl 4-hydroxylase, a key collagen-modifying enzyme. Site-directed mutagenesis indicates that the independent catalytic activity of PDI-2 may also perform an essential developmental function. PDI-2 therefore performs two critical roles during morphogenesis. The role of PDI-2 in collagen biogenesis can be partially restored following complementation of the mutant with human PDI

    Lessons from morpholino-based screening in zebrafish

    Get PDF
    Morpholino oligonucleotides (MOs) are an effective, gene-specific antisense knockdown technology used in many model systems. Here we describe the application of MOs in zebrafish (Danio rerio) for in vivo functional characterization of gene activity. We summarize our screening experience beginning with gene target selection. We then discuss screening parameter considerations and data and database management. Finally, we emphasize the importance of off-target effect management and thorough downstream phenotypic validation. We discuss current morpholino limitations, including reduced stability when stored in aqueous solution. Advances in MO technology now provide a measure of spatiotemporal control over MO activity, presenting the opportunity for incorporating more finely tuned analyses into MO-based screening. Therefore, with careful management, MOs remain a valuable tool for discovery screening as well as individual gene knockdown analysis

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development

    Get PDF
    A number of studies showed that the development and the lifespan of Caenorhabditis elegans is dependent on mitochondrial function. In this study, we addressed the role of mitochondrial DNA levels and mtDNA maintenance in development of C. elegans by analyzing deletion mutants for mitochondrial polymerase gamma (polg-1(ok1548)). Surprisingly, even though previous studies in other model organisms showed necessity of polymerase gamma for embryonic development, homozygous polg-1(ok1548) mutants had normal development and reached adulthood without any morphological defects. However, polg-1 deficient animals have a seriously compromised gonadal function as a result of severe mitochondrial depletion, leading to sterility and shortened lifespan. Our results indicate that the gonad is the primary site of mtDNA replication, whilst the mtDNA of adult somatic tissues mainly stems from the developing embryo. Furthermore, we show that the mtDNA copy number shows great plasticity as it can be almost tripled as a response to the environmental stimuli. Finally, we show that the mtDNA copy number is an essential limiting factor for the worm development and therefore, a number of mechanisms set to maintain mtDNA levels exist, ensuring a normal development of C. elegans even in the absence of the mitochondrial replicase

    The Nc1/Endostatin Domain of Caenorhabditis elegans Type Xviii Collagen Affects Cell Migration and Axon Guidance

    Get PDF
    Type XVIII collagen is a homotrimeric basement membrane molecule of unknown function, whose COOH-terminal NC1 domain contains endostatin (ES), a potent antiangiogenic agent. The Caenorhabditis elegans collagen XVIII homologue, cle-1, encodes three developmentally regulated protein isoforms expressed predominantly in neurons. The CLE-1 protein is found in low amounts in all basement membranes but accumulates at high levels in the nervous system. Deletion of the cle-1 NC1 domain results in viable fertile animals that display multiple cell migration and axon guidance defects. Particular defects can be rescued by ectopic expression of the NC1 domain, which is shown to be capable of forming trimers. In contrast, expression of monomeric ES does not rescue but dominantly causes cell and axon migration defects that phenocopy the NC1 deletion, suggesting that ES inhibits the promigratory activity of the NC1 domain. These results indicate that the cle-1 NC1/ES domain regulates cell and axon migrations in C. elegans

    Conservation of the Centromere/Kinetochore Protein ZW10

    Get PDF
    Mutations in the essential Drosophila melanogaster gene zw10 disrupt chromosome segregation, producing chromosomes that lag at the metaphase plate during anaphase of mitosis and both meiotic divisions. Recent evidence suggests that the product of this gene, DmZW10, acts at the kinetochore as part of a tension-sensing checkpoint at anaphase onset. DmZW10 displays an intriguing cell cycle–dependent intracellular distribution, apparently moving from the centromere/kinetochore at prometaphase to kinetochore microtubules at metaphase, and back to the centromere/kinetochore at anaphase (Williams, B.C., M. Gatti, and M.L. Goldberg. 1996. J. Cell Biol. 134:1127-1140)

    Ca2+-dependent Muscle Dysfunction Caused by Mutation of the Caenorhabditis elegans Troponin T-1 Gene

    Get PDF
    We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT

    Cell-Specific Monitoring of Protein Synthesis In Vivo

    Get PDF
    Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems
    corecore