

ABSTRACT

Title of dissertation: AN INITIAL EVALUATION OF IBI VIZEDIT: AN

RSHINY APPLICATION FOR OBTAINING ACCURATE

ESTIMATES OF AUTONOMIC REGULATION OF

CARDIAC ACTIVITY

 Matthew George Barstead, Doctor of Philosophy, 2018

Dissertation directed by: Professor Kenneth H. Rubin

Department of Human Development & Quantitative

Methodology

Photoplethysmogram (PPG) sensors are increasingly used to collect individual

heart rate data during laboratory assessments and psychological experiments. PPG

sensors are relatively cheap, easy to use, and non-invasive alternatives to the more

common electrodes used to produce electrocardiogram recordings. The downside is that

these sensors are more susceptible to signal distortion. Often, the most relevant measures

for understanding psychological processes that underlie emotions and behaviors are

measures of heart rate variability. As with all measures of variability, outliers (i.e., signal

artifacts) can have outsized effects on the final estimates; and, given that these scores

represent a primary variable of interest in many research contexts, the successful

elimination of artefactual points is critical to the ability to make valid inferences with the

data. Prior to the development of IBI VizEdit, there was no single, integrated processing

and editing pipeline for PPG data. The present pair of studies offers and initial evaluation

of the program’s performance. Study 1 is focused on the efficacy of a novel approach to

imputing sections of particularly corrupted PPG signal. Study 2 tests the ability of trained

editors to reliably use IBI VizEdit as well as the validity of estimates of cardiac activity

during a prescribed set of laboratory tasks. Study 1 suggests that the novel imputation

approach, under certain conditions and using certain parameterizations may hold promise

as a means of accurately imputing missing sections of data. However, Study 1 also

clearly demonstrates the need for further refinement and the consideration of alternative

implementations. The results from Study 2 indicate that IBI VizEdit can be reliably used

by trained editors and that estimates of cardiac activity derived from its output are likely

valid.

AN INITIAL EVALUATION OF IBI VIZEDIT: AN RSHINY APPLICATION FOR

OBTAINING ACCURATE ESTIMATES OF AUTONOMIC REGULATION OF

CARDIAC ACTIVITY

by

Matthew G. Barstead

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2018

Committee Members:

Professor Kenneth H. Rubin, Ph.D. (Primary Advisor)

Professor Andrea Chronis-Tuscano, Ph.D. (Dean’s Representative)

Professor Jeffrey R. Harring, Ph.D.

Assistant Professor Alexander J. Shackman, Ph.D.

Assistant Professor Nicholas J. Wagner, Ph.D.

©Copyright by

Matthew G. Barstead

2018

ii

ACKNOWLEDGEMENTS

 There are so many people to thank in terms of getting me here to this final step in

my Ph.D. program. I will start with my committee members, who during my dissertation

defense stepped in and saved me from myself. I had initially proposed three studies and

they wisely suggested that I might have been over-reaching given my proposed timeline

for completion. With how long it took to put this document together as it was, I will be

forever glad I agreed with their assessment and took their advice.

 I would also like to single out my advisor Ken Rubin. Not only did he admit me

into the program, seeing a future successful graduate student in my application materials

when no one else did, he provided countless opportunities to grow as a researcher. More

than anything though, I am glad he offered me the space I needed to find a scientific

problem I wanted to solve. He knew when to interject himself and provide more direct

guidance and when to hang back and let me go through the process of learning and

growing on my own. Ken, thank you always for being so well-balanced as a mentor and

for giving me the tools and opportunities to find my own path.

 Then of course there are my parents, Tara and Greg. My mother is a consummate

teacher whose patience and ability to incite and foster curiosity have had outsized effects

on the man and researcher I am today. My father is one of the most intelligent people I

know. He is circumspect in his thinking, able to identify broad patterns in complex data,

and capable of making his point with unrivaled wit and clarity. They have stood as

incredible examples for me throughout my life and have provided me with every form of

support imaginable during my winding professional and academic career. It is hard to

know a counterfactual, but I am fairly certain I would not be in this position had they

iii

made different choices or elected to sacrifice less in their efforts to pick me up when I

stumbled and to clear life’s path of what debris they could. I love you both, and thank

you for everything you have done and continue to do for me. There is no way this former

college dropout earns a Ph.D. without the support you have both offered in the

intervening years.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vi

LIST OF TABLES .. viii

CHAPTER 1 .. 1

CHAPTER 2 .. 7

Linking the Mind and the Body: The Role of the Autonomic Nervous System in Emotion

and Emotion Regulation ... 7

Polyvagal Theory .. 10

Neurovisceral Integration Model .. 13

Integrating Polyvagal Theory and the Neurovisceral Integration Model 14

Measuring Heart Rate Variability ... 15

Electrocardiogram ... 15

Photoplethysmography ... 18

Understanding Common Measures of Cardiac Activity ... 21

Heart Rate/Heart Period .. 21

Standard Deviation of the Normal-Normal Interval ... 21

Root Mean Square of Successive Differences .. 22

Respiratory Sinus Arrhythmia & High-Frequency Heart Rate Variability 23

Tonic vs. Dynamic Measures of Variability .. 25

Current Editing and Analytic Strategies ... 27

Identifying and Managing Low Quality Data ... 29

Introducing IBI VizEdit ... 30

Summary and Current Research ... 31

CHAPTER 3 .. 34

An Overview of IBI VizEdit .. 34

Peak Detection Algorithm ... 34

Manual Editing.. 38

Gaussian Process Models .. 41

Implementing Gaussian Process Models in IBI VizEdit ... 45

Research Overview ... 47

Study 1: Evaluating the Novel Imputation Tool in IBI VizEdit ... 48

Overview ... 48

v

Participants .. 49

Procedures ... 50

Data Re-sampling Design: Testing the Three Gaussian Process Models 52

Measures ... 55

Hypotheses and Analyses .. 57

Study 2: Reliability and Validity of IBI VizEdit Outputs ... 58

Study 2 Overview ... 58

Participants .. 59

Procedures ... 60

Measures ... 65

Hypotheses and Proposed Analyses .. 73

CHAPTER 4 .. 75

Study 1 Results ... 75

Study 2 Results ... 91

CHAPTER 5 .. 107

Study 1: Is there Evidence to Support the Use of Gaussian Process Models? 107

Study 2: Can Trained Editors reliably use IBI VizEdit? ...117

Study 2: Can IBI VizEdit be used to produce valid estimates of heart rate and

autonomic regulation of cardiac activity in a laboratory setting? 120

Study 2: Can estimates of parasympathetic regulation of cardiac activity derived from

files edited in IBI VizEdit be used to predict children’s social behavior in a real-world

context? ... 123

Conclusions ... 128

APPENDICES ... 129

Appendix A: Programming Components of IBI VizEdit .. 129

Appendix B: Model and Data Analysis/Summary Code .. 138

Appendix C: Code Used to Generate Figures ... 145

Appendix D: Code for Re-Sampling Program .. 172

REFERENCES .. 208

vi

LIST OF FIGURES

Figure 2.1 Typical Heartbeat as detected by electrocardiogram recordings 17
Figure 2.2 Screenshot of photoplethysmogram signal with artifacts in IBI VizEdit 19

Figure 2.3 AcqKnowledge screenshot of simultaneously collected electrocardiogram

(middle) and photoplethysmogram (top) data... 20
Figure 2.4 Spectral analysis of photoplethysmogram-derived interbeat intervals 25
Figure 3.1 Effects of pre-processing photoplethysmogram data with random noise 35
Figure 3.2 Identifying peaks and troughs in periodic data using IBI VizEdit's peak

detection algorithm ... 36
Figure 3.3 Results of iterative peak detection algorithm applied to simulated data 37
Figure 3.4 Screenshot depicting peak detection algorithm performance with data

including artifacts.. 38

Figure 3.5 Screenshot depicting peak detection algorithm performance with artifact-free

data .. 38

Figure 3.6 Screenshot depicting misidentification of an early heartbeat 40
Figure 3.7 Screenshot depicting IBI signal deflection that requires averaging of two

points ... 41
Figure 3.8 Screenshot depicting failure to identify a heartbeat 41
Figure 3.9 Intervention study timeline ... 48

Figure 3.10 Graphic depiction of varying conditions during physiological assessments 51
Figure 3.11 Depicting of Gaussian process imputation model testing 54

Figure 3.12 Respiratory sinus arrhythmia distributions by task 66
Figure 3.13 Heart period distribution by task .. 67
Figure 3.14 RMSSD distributions by task ... 69

Figure 3.15 Distributions of proportion of 10-second epochs children engaged in each

coded play behavior .. 72
Figure 4.1 Convergence of Gaussian process models under varying conditions as

measured by scale reduction factor of the model-estimated heart rate parameter 76

Figure 4.2 Model run time for each Gaussian process model under varying conditions . 84
Figure 4.3 Model run time as a function of total time to be imputed 86

Figure 4.4 Distributions of imputation-derived RMSSD deviations from original values

... 87

Figure 4.5 Distributions of imputation-derived RMSSD deviations from original values

from models with adequate convergence .. 90
Figure 4.6 Distributions of the proportion of edits required by task 92
Figure 4.7 RSA difference scores for primary editors: Comparing editors' RSA values

from IBI VizEdit and Cardio Edit ... 93

Figure 4.8 RSA difference scores for primary editors: Comparing RSA values from a

third editor using IBI VizEdit ... 95

Figure 4.9 Vizualization of missing data for RSA values .. 96
Figure 4.10 Vizualization of missing data for IBI VizEdit-Generated values 97
Figure 5.1 Relatively successful imputation (in red) compared with original values (in

black)... 108
Figure 5.2 Example of imputed values (in red) that are offset from original values (in

black)... 109

file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286726
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286727
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286728
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286728
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286729
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286730
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286731
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286731
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286732
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286733
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286733
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286734
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286734
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286735
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286736
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286736
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286737
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286738
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286739
file:///C:/Users/Mbars/Dropbox/Dissertation/Revisions/Barstead_Diss_comm_draft.docx%23_Toc529286740

vii

Figure 5.3 Example of a failed imputation run (in red) relative to the original signal (in

black)..110
Figure 5.4 Divergence in hyperparameter estimates for Gaussian process model 2 based

on absolute differences in estimates from two sets of random starting values112

Figure 5.5 Divergence in hyperparameter estimates for Gaussian process model 3 based

on absolute differences in estimates from two sets of random starting values113
Figure 5.6 Example of Gaussian process model with incorrectly specified length

parameters that are too short ..114
Figure 5.7 Example of a Gaussian process model with incorrectly specified length

parameters that are too long ...115
Figure 5.8 Comparing RSA scores from files edited in Cardio Edit vs. IBI VizEdit119
Figure 5.9 Within-task correlations of physiological variables derived from edited

interbeat interval files ... 122

viii

LIST OF TABLES

Table 3.1 ... 68
Table 4.1 ... 77

Table 4.2 ... 78
Table 4.3 ... 79
Table 4.4 ... 80
Table 4.5 ... 81
Table 4.6 ... 82

Table 4.7 ... 98
Table 4.8 ... 99
Table 4.9 ... 99
Table 4.10 ... 100

Table 4.11 ... 101
Table 4.12 ... 102

Table 4.13 ... 102
Table 4.14 ... 103

Table 4.15 ... 103
Table 4.16 ... 104
Table 4.17 ... 105

Table 4.18 ... 105
Table 4.19 ... 105

Table 4.20 ... 106
Table 4.21 ... 106

1

CHAPTER 1

The two studies described herein tested a recently developed program designed to

process, and allow for the manual editing of, heart rate data. The overarching aim of these

studies is best characterized as a preliminary methodological investigation of this new

program’s capacity to return reliable and valid estimates of heart rate variability. Thus,

the two studies do not represent an exhaustive evaluation of this new program. Instead,

the investigations balanced the assessment of reliability and validity of the program’s

outputs with the testing of issues related to the program’s applied use with data collected

as part of an ongoing intervention study for extremely shy and inhibited preschoolers.

The newly created, open-sourced program, IBI VizEdit (Barstead, 2018) was

designed specifically for the processing and manual editing of photoplethysmographic

heart rate data (in contrast to heart rate data obtained using the more common

electrocardiogram). Photoplethysmogram sensors are typically attached to an individual

at peripheral sites of the body (such as a fingertip or ear lobe) and transduce changes in

light absorption to estimate blood volume flowing through local capillary beds (Allen,

2007). These non-invasive sensors have several practical advantages over sensors that

may offer a more precise measure of cardiac activity (e.g., electrocardiogram). For

instance, they are easy to use and can be correctly attached to participants with minimal

training. However, there are some downsides. In contrast to electrocardiogram sensors

that measure the heart’s electrical activity, photoplethysmogram sensors are more

susceptible to a variety of artifacts (Couceiro, Carvalho, Paiva, Henriques, & Muehlsteff,

2012; Sukor, Redmond, & Lovell, 2011). For sensors attached to a participant’s fingertip

(as was the case in the present data sets), movement artifacts, in particular, can present

2

non-trivial editing challenges as changes in blood volume become a combination of the

effects of (a) true cardiac activity, (b) volumetric changes due to the position of the hand

in relation to the heart, and (c) changes in the pressure of the sensor on the local capillary

bed (i.e., if the participant depresses or alters the relative location of the sensor on his or

her fingertip). The waveform of the photoplethysmogram signal further complicates

matters as it lacks the characteristic and easily identifiable spiking used to mark heart

beats in electrocardiogram recordings (Sukor et al., 2011).

Problems arising from artifacts are neither new to the collection of physiological

data, in general, nor are they new to heart rate data in particular (Berntson et al., 1997;

Berntson, Quigley, Jang, & Boysen, 1990; Berntson & Stowell, 1998; Kaufmann,

Sutterlin, Schulz, & Vogele, 2011; Kim & Yoo, 2006; Lee, Lee, Jung, & Lee, 2007).

However, most editing approaches designed to correct for these artifacts were designed

based on signals obtained from electrocardiogram sensors (Berntson et al., 1997;

Kaufmann et al., 2011; Porges & Byrne, 1992). Recently, automated machine learning

approaches have been applied to electrocardiogram data and have shown promise as a

potential replacement of the current editing gold standard, which is the more arduous

manual identification and removal of artifacts (Hegarty-Craver et al., 2017). However, it

is not clear that these approaches are appropriate for use with photoplethysmogram data,

which produce a slower oscillating waveform than the more pronounced rapid onset

signal of the heart’s electrical activity. Moreover, the detection of heartbeats, and the

subsequent calculation of time between successive beats (i.e., interbeat intervals) that are

the focus of numerous analyses and calculations, requires a modified approach when

working with photoplethysmogram data, again raising questions about the wholesale

3

adoption of editing techniques that have been developed for use with electrocardiogram

data. Given the proliferation of the use of photoplethysmogram sensors due, in part, to

their practical advantages over electrocardiogram electrodes, developing appropriate

processing and editing techniques for these data represents an important and timely

contribution to the field of psychophysiological research.

One modest goal of the program is to eliminate the need for relying on multiple

custom-built programs to separately complete each of these steps in the editing process.

To that end, IBI VizEdit offers a comprehensive editing interface that allows users to

seamlessly process raw data using an adaptive peak detection algorithm, employ a

graphic interface for the identification and removal of artifacts, and save edited files and

editing summaries for subsequent analyses. In addition to these functional improvements,

a key novel feature of IBI VizEdit is its inclusion of an advanced imputation tool built

using Gaussian process models within a Bayesian estimation framework. In theory, this

imputation tool has the potential to provide users with a series of suggested edits that

better preserve the naturally-occurring variation in the timing of heart beats than would

otherwise be possible with standard editing approaches.

There are multiple aspects regarding the use of IBI VizEdit that require

examination, not all of which can be evaluated in a single pair of studies. As a result,

particular components were targeted for this initial set of evaluations. The first of the two

studies focused primarily on the effectiveness of the aforementioned imputation model.

Three different parameterizations of the imputation model were tested under varying

modeling and data collection conditions (e.g., amount of time to be imputed).

Effectiveness of the imputation models was evaluated via the repeated sampling and

4

imputation of photoplethysmogram data that were visually confirmed to be artifact free.

In this first study, measures of heart rate variability from the original (i.e., “true”)

interbeat interval values were compared with measures of heart rate variability derived

from imputed data. Imputed values were also compared with two relatively naïve

imputation solutions – a mean replacement and a hotdeck random replacement strategy,

both of which involve well-known statistical downsides but are easy to implement from a

statistical programming standpoint. If the imputation models were not capable of

producing less biased and more precise estimates of cardiac activity than these simpler,

imperfect replacement strategies, there may be little practical benefit to their use.

The imputation tool included in IBI VizEdit is exactly that, a tool, and it represents

a small, though potentially important component of the program. In practice, a human

editor is still required to evaluate and accept or reject the model-implied values. The

Gaussian process models tested in the present report were never intended to replace

manual editing; they were intended to enhance the manual editing strategies available by

adding a model-based approach. Indeed, the bulk of editing expected to occur while using

IBI VizEdit involves editing techniques long incorporated in established editing software.

These main editing functions rely on subjective appraisals made by trained editors. With

only visual cues and general guidelines to rely upon, editors must make decisions about

adjusting or not adjusting the relative location of interbeat intervals. As with any human

activity in research, this process introduces a potential source of error to final scores as a

function of variation in editor-to-editor appraisals of each file.

Thus, in addition to evaluating the novel imputation tool included in IBI VizEdit,

the present report also included an examination of the primary editing interface when

5

used to edit data collected in an ongoing intervention study. As part of this ongoing

research, heart rate data were collected during three different laboratory assessments

across the intervention period. During the assessment, children (and their parents) were

exposed to a series of conditions expected to cause changes in their emotional and

cognitive states – which would ultimately be manifested in changes in cardiac

functioning. These data presented an opportunity to evaluate the ability of trained editors

to use the program reliably. Reliability was assessed in two primary ways. The first was

the degree to which different editors, using IBI VizEdit, arrived at similar cardiac activity

scores. The second was the degree to which the same editors arrived at equivalent scores

using IBI VizEdit and a similar, more established, program Cardio Edit (Brain-Body

Center, 2007).

Of course, reliability (i.e., the degree to which an instrument returns a measure

free from error) is an important property to demonstrate in a new tool. However, the

ability to generate valid inferences from the program’s outputs is equally vital to its use

in research. To that end, validity (i.e., the degree to which an instrument measures the

phenomenon of interest) was assessed in two ways. The first evaluation involved testing

whether a series of prescribed laboratory tasks produced expected changes in heart rate

and heart rate variability in a selected sample of young children using IBI VizEdit. The

second effort to establish validity focused on the ability of heart rate and heart rate

variability scores from the aforementioned assessment conditions to predict theoretically

related social behaviors among those same children in a classroom setting.

In sum, the two studies sought to provide a foundation from which to continue to

build and refine IBI VizEdit. The first study evaluated a novel implementation of

6

Gaussian process models to assist editors in making statistically informed edits to

sections of particularly problematic data. The second study evaluated IBI VizEdit’s ability

to return reliable and valid estimates of cardiac activity during a series of prescribed

laboratory tasks. The goal of this, still nascent, program of research was to design a

completely open-sourced program for editing heart rate data that can be easily, reliably,

and validly used by trained editors. These two studies represents a critical first step in

meeting this broader objective.

7

CHAPTER 2

What kind of an emotion of fear would be left if the feeling neither of quickened heart-

beats nor of shallow breathing, neither of trembling lips nor of weakened limbs, neither

of goose-flesh nor of visceral stirrings, were present, it is quite impossible for me to

think … I say that for us emotion dissociated from all bodily feeling is inconceivable.

- Williams James

Linking the Mind and the Body: The Role of the Autonomic Nervous System in

Emotion and Emotion Regulation

Walking home late at night, you sense a vague shape in your periphery. Suddenly

a loud noises screeches through the blackness, emanating from the same direction. As

information passes along sensory fibers, neural circuits work to make sense of the input.

Messages carried along cranial nerves cause muscles in the neck to relax and contract,

pivoting the body’s two primary sensory systems (vision and hearing) toward the

amorphous noise-generating shape. At effectively the same moment as your eyes and ears

are positioned to acquire additional information about the threat, your heart rate begins to

increase, as does your pace of breathing. Alterations to the dilation of blood vessels

subsequently divert the resulting influx of oxygenated blood away from non-essential

systems as the body becomes primed to fight or flee.

On its own, the brain cannot enact a response to a lurking shape in the darkness. It

cannot initiate a sexual encounter or acquire its own energy. Brains can, however,

coordinate a diverse array of biological systems in the service of a unified goal. Neural

regulation of internal biological systems takes many forms and relies on several different

8

levers, two of the most important of which are the parasympathetic and sympathetic

branches of the autonomic nervous system. When the neural machinery involved in

attention and emotion regulation pulls on these levers, it leaves traces; traces that await a

good detective with the right set of tools.

Over the years, these tools have grown to include measures of salivary cortisol

(Hellhammer, Wüst, & Kudielka, 2009), galvanic skin response (Vetrugno, Liguori,

Cortelli, & Montagna, 2003), blood pressure (Chida & Hamer, 2008), and heart rate

variability (Beauchaine & Thayer, 2015), among others. To varying degrees and in

different ways, each of these measures taps the functioning of more centrally located

neural circuits responsible for emotional and behavioral regulation. Not surprisingly,

cardiac activity figures prominently on this list of meaningful peripheral measures. Once

thought to be the locus of emotion, the heart may not be involved in the active processing

of emotional sensations, but variation in its activity is certainly related to emotional

states. Indeed, it is hard to think of a system more central to the acquisition and

distribution of energy stores than the cardiovascular system. As a result, changes in

cardiac output underlie a number of reactions, including emotional responses.

Reciprocal connections, various self-limiting feedback loops, and distinct

signaling pathways create a network of neural-autonomic-cardiac connections that

provide moment-to-moment regulation of cardiac output. At rest and in the absence of

threat, most of that regulation takes the form of tonically active inhibitory signaling along

the myelinated vagus nerve, part of the parasympathetic nervous system. The vagus nerve

is the 10th cranial nerve and is largely responsible for managing communication between

the body’s viscera (i.e., organs) and the brain (Haines & Mihailoff, 2013). The cell bodies

9

that make up the vagus nerve originate in the brain stem and synapse onto the heart at the

sinoatrial node, which is sometimes described as the heart’s internal pacemaker. Without

tonic inhibitory signaling along the myelinated vagus, sinoatrial pacing would result in

higher baseline heart rate (Porges, 2007). With upstream connections to limbic and

cortical structures (in addition to reciprocal connections with other brainstem nuclei) and

downstream connections with the heart and other viscera, the vagus nerve can be

considered a neural-visceral bridge of sorts. Importantly, monitoring activity along this

anatomical connector can provide insight into the overall functioning of the entire

internal regulatory system.

To better understand the myelinated vagus’ role in regulating cardiac output,

Porges has often used the metaphor of an automobile’s acceleration and braking systems

(Doussard-Roosevelt, Montgomery, & Porges, 2003; Porges, 1995, 2007; Porges,

Doussard-Roosevelt, Portales, & Greenspan, 1996). Imagine a car with a jammed

accelerator pedal (the sinoatrial node) incapable of completely returning to an idling

position. Under this system of control, maneuvering along narrow, local streets requires

constant application of the brake (vagus) to maintain a safe speed. Circumstances may

arise that require careful course adjustments, and further application of the brake (vagus)

can be used to improve control under these conditions. Occasionally expediency, or the

presence of danger, requires a rapid response. In these instances, the brake (vagus) can be

released allowing the car to increase speed quickly up to the point of the stuck accelerator

pedal (sinoatrial node). In moments that are especially intense, the vehicle’s speed can be

increased even further by depressing the accelerator (via sympathetic inputs).

10

Two theoretical frameworks, one rooted in evolutionary psychology (Polyvagal

Theory; Porges, 1995, 2007), the other in dynamic systems theory (Neurovisceral

Integration Model; Smith, Thayer, Khalsa, & Lane, 2017; Thayer, Hansen, Saus-Rose, &

Johnsen, 2009; Thayer & Lane, 2000) emphasize slightly different aspects of vagal

control of heart rate. Despite their differences, much of the evidence that supports one

framework is entirely consistent with the other and both make predictions supported by

data. Most importantly, both theories argue that it should be possible to observe effects of

more centrally located neural control circuits in peripheral measures of cardiac activity.

Polyvagal Theory

Porges’ (1995, 2007) Polyvagal Theory rests on a mix of phylogenetic,

anatomical, and functional evidence showing that vagal tone is the output of a complex

neural circuit involved in regulating the autonomic nervous system. As a starting point,

Polyvagal Theory characterizes emotional responses as experiences entirely dependent on

reciprocal connections between the brain, the autonomic nervous system, and

interoceptive sensory signals (i.e., sensory information about internal states). Moreover,

the theory suggests that evolutionary processes have resulted in changes to the

connectivity and functioning of this neural-autonomic-visceral network.

Early on in the evolution of vertebrate species, the vagus nerve primarily

supported the behavioral response strategy of freezing in the presence of perceived

threats (Porges, 2001, 2003). Freezing is a relatively common response strategy across

species that involves a drastic reduction in metabolic output and activity, including a

slower heart rate. Freezing can be a risky gambit, though, as the response strategy does

little to distance the organism from the source of the potential threat. Clearly a wider

11

range of behavioral responses would be evolutionarily beneficial; however, such

responses require control systems and signaling pathways that can be utilized to

simultaneously effect change on multiple systems.

With the phylogenetic development of the sympathetic nervous system,

evolutionary pressures resulted in a new (generally excitatory) communication pathway

linking the brain and the body. Through signaling along the unmyelinated vagus nerve,

organisms could rapidly slow down the body’s metabolic activity. The advent of the

sympathetic nervous system meant that organisms now had an option to significantly

increase their metabolic output for a brief period. Thinking through what the two systems

meant for behavioral response options, organisms at this evolutionary stage could now

respond to a threat by freezing (unmyelinated vagus), fleeing (sympathetic inputs), or

fighting (sympathetic inputs). One downside of the functioning of this newer system is

that it can be energetically costly to activate the sympathetic response, and its activation

reduces activity in important ongoing background processes involved in immune

response, digestion, and waste removal (Haines, 2013).

It is at this evolutionary crossroads that mammals diverge from other vertebrates,

with the development of the myelinated vagus nerve (Taylor et al., 2014). Myelin is a

lipoprotein sheathing that provides insulation to neurons and improves the speed at which

electrical signals propagate along a neuron’s axon (Naftel, Ard, & Fratkin, 2013). The

presence of myelin is generally thought to indicate that there is a functional need for

rapid signaling along the pathway. Because activation of the sympathetic nervous system

often involves dispersal of chemical signaling via the bloodstream, it can also take time

for its effects to dissipate, limiting regulatory options. For instance, after a fear-inducing

12

experience, it can take time to return to a homeostatic baseline. At an evolutionary level,

the emergence of the myelinated vagus nerve offered a means of moderately adjusting

metabolic output without the costs and limited flexibility afforded by signaling along

sympatho-excitatory circuits.

Porges (1995) viewed the development of the myelinated vagus nerve in

mammals as driven primarily by the need to increase the number of adaptive response

options during social interactions. As the size and complexity of a species’ social group

increases, it is increasingly challenging to automate social responses. Humans, in

particular, have extended their behavioral repertoire well beyond the simpler options of

freezing, fighting, and fleeing. According to Porges, evolutionary pressures related to

successful engagement in complex social milieux are a chief reason why the myelinated

vagus nerve is found only in mammals, which tend to be more social species with longer

periods of offspring dependency than most other vertebrates.

Porges relied heavily on anatomical evidence in making his case that the

myelinated vagus nerve is, first and foremost, designed to support effective social

engagement with conspecifics. A particularly convincing line of evidence is the

evolutionary co-location of cell bodies implicated in vagal control over heart rate with the

cell bodies of other cranial nerves that innervate striated muscle in the face (facial

expression), muscles in the neck (orienting to sounds and sights), muscles in the middle

ear (modulating auditory perception) and muscles surrounding the larynx and pharynx

(speech production and prosody) (Porges, 1995). The myelinated vagus nerve’s signaling

speed and its integration with other neural structures involved in emotional and social

expressions results in a system that can simultaneously tune internal states and outward

13

expressions to match environmental demands. Unsurprisingly, ineffective signaling along

this pathway is associated with a number of emotional and social maladies such as

depression (Gentzler, Santucci, Kovacs, & Fox, 2009; Rottenberg, Wilhelm, Gross, &

Gotlib, 2002), anxiety (Thayer, Friedman, & Borkovec, 1996), and loneliness (Grippo,

Lamb, Carter, & Porges, 2007).

Neurovisceral Integration Model

In contrast to focusing on the evolutionary origins of the myelinated vagus nerve,

the Neurovisceral Integration Model (Thayer & Lane, 2000) focuses on the dynamic

systems involved in the neural processing and regulation of emotions. The model posits

that measures such as heart rate variability, cortisol, and blood pressure represent the

outputs of a neural network involved in cognitive and affective regulation (Park &

Thayer, 2014; Smith et al., 2017; Thayer et al., 2009). Referred to as the central

autonomic network, this interconnected set of neural structures is charged with regulating

the activity of the heart and other viscera via parasympathetic (generally inhibitory) and

sympathetic (generally excitatory) signaling pathways. According to this view, heart rate

variability represents a distal measure of the overall functioning of the central autonomic

network.

 The Neurovisceral Integration Model places particular importance on the

interconnected neural and autonomic structures that underlie emotion reactivity and

regulation (Smith et al., 2017; Thayer et al., 2009). This emphasis is the result of

investigations that have shown that autonomic activity is modulated by a series of direct

and indirect paths involving prefrontal, cortical, and subcortical structures (Sakaki et al.,

2016; Thayer, Åhs, Fredrikson, Sollers, & Wager, 2012). This network of neural regions

14

is complex and involves multiple reciprocal connections among its centrally located

neural structures as well as connections with sensory neurons relaying information back

to the network from the periphery. The complexity of this dynamic system of interlocking

circuits and feedback loops should not be surprising given its purpose of coordinating

organism-wide states, altering the functioning of nearly every internal system. In fact, the

complexity of neural regulation of the autonomic nervous system is one of the reasons

Thayer and colleagues relied on dynamic systems theories when developing the

Neurovisceral Integration Model.

The implication of the Neurovisceral Integration Model is subtle but powerful: the

functional connectivity of a network of neural regions involved in responding to

environmental cues can be detected in a signal derived from a relatively distal

physiological source: cardiac activity. Within this framework, it is possible then to

conceptualize vagal tone as a transdiagnostic biomarker of psychopathology (T. P.

Beauchaine, 2015; T. P. Beauchaine & Thayer, 2015). Such a conceptualization has the

added benefit of positioning heart rate variability squarely within the boundaries of the

National Institute of Mental Health’s Research Domain Criteria (RDoC) for the diagnosis

of mental health disorders (Insel et al., 2010). As a meaningful biomarker within an

evolving diagnostic framework then, measures of heart rate variability have the potential

to be clinically useful in addition to their value as measures used by basic and applied

researchers.

Integrating Polyvagal Theory and the Neurovisceral Integration Model

It is important to stress that the Polyvagal Theory and Neurovisceral Integration

Model are largely in agreement with one another. Both theories place importance on the

15

autonomic nervous system as a critical signaling pathway that links neural and visceral

internal regulatory systems. Where Porges (1995; 2007) detailed the different

evolutionary pressures that may have influenced changes in the autonomic nervous

system (namely the appearance of the myelinated vagus in mammals and the need for

increased complexity in social interactions), Thayer and colleagues (Jennings, Allen,

Gianaros, Thayer, & Manuck, 2015; Smith et al., 2017; Thayer et al., 2009; Thayer &

Lane, 2000) focused primarily on how the central autonomic network makes use of the

myelinated vagus nerve when regulating internal states.

These two theories provide an overall framework for understanding how and why

the appropriate and effective processing and editing of heart rate data is important.

Whether conceptualized as an output of a social engagement system or the central

autonomic network, measures of heart rate variability can provide access to relatively

cheap, diagnostically relevant, empirically supported, and theoretically grounded

information about individuals’ general ability to regulate their own internal states,

emotions included. In short, these two theories suggest that there are neural fingerprints

that can be found in the heart rate signal, provided we know how and where to look. Best

practices and guidelines for detecting these fingerprints have been described (Denver,

Reed, & Porges, 2007; Huikuri et al., 1999; Jennings et al., 1981), and added to (Laborde,

Mosley, & Thayer, 2017; Quintana, Alvares, & Heathers, 2016), but there remains wide

variability in methodologies across disciplines interested in quantifying autonomic

influence on heart rate.

Measuring Heart Rate Variability

Electrocardiogram

16

The most recognizable technique used to collect heart rate is, arguably,

electrocardiography (ECG or EKG), which measures the electrical activity of the heart.

The signal returned by ECG sensors includes a series of features that can be used to

derive multiple indicators of cardiac activity on a very precise timescale (Berntson &

Stowell, 1998; McKinley et al., 2003; Newlin & Levenson, 1979; Sherwood et al., 1990).

Of the different ECG signal properties, the one most directly relevant to assessing heart

rate variability is the RR interval, which researchers sometimes refer to as the NN

interval as a means of highlighting that the heartbeats referenced are in fact normal beats

(i.e., not the result of abnormal rhythms). The letter “R” is used to identify the peak

electrical activity detected within QRS complex – a stereotyped deflection present in the

ECG signal (see Figure 2.1). Most heart rate and heart rate variability analyses using

ECG data utilize the RR interval as a measure of the time lapse between successive heart

beats, also known as the interbeat interval. As a result, pioneering empirical and

theoretical work based on measures of heart rate variability has largely relied on ECG

data. Naturally then, the vast majority of tools originally developed for researchers in this

field were created using the ECG waveform (Berntson et al., 1990; Brain-Body Center,

2007; Kaufmann et al., 2011).

One downside of the use of ECG for recording heart rate data is that it can be

somewhat more invasive than alternatives. It is not that the electrodes used for these

recordings pose a risk or are likely to harm participants in any way; it is simply that the

application of adhesive electrodes and isotropic gels can be off-putting for participants,

particularly when their use often requires sensors to be placed on the chest and abdomen

(e.g., Biopac Systems, 2017). To normalize and ease the experience of collecting these

17

data, some device makers have created vests or chest bands that are designed to be easier

to apply and feel more natural to wear. These sorts of recording devices combined with

wireless technology allow investigators to collect heart rate data from participants in

ambulatory states. Though beneficial, heart rate chest bands and vests still require the

removal of certain articles of clothing and/or the placement of sensors in sensitive areas.

When the goal of research falls in the domain of exercise physiology, the ultimate

Figure 2.1 Typical Heartbeat as detected by electrocardiogram recordings

18

psychological discomfort associated with using particular measurement tools may be of

limited concern. For researchers interested in assessing the emotional and psychological

correlates of cardiac activity, utilizing sensors that minimize residual sources of

discomfort is more central to safeguarding the internal validity of their work. Some

populations may even find the use of electrodes so off-putting they refuse to participate1.

Photoplethysmography

Ease of use, reduced invasiveness, and relatively low cost are among the reasons

for the increased use of photoplethysmography (PPG) in recent years. The ubiquity of

PPG sensors has even grown to the point that they can be found in many smart watches

and other portable consumer technology. As compared with the ECG waveform, PPG

sensors produce a longer, slower-moving waveform that measures changes in blood flow

(see Figure 2.2). Whereas ECG recordings are based on the electrical activity that causes

the heart’s atria and ventricles to contract, PPG sensors record the changes in blood flow

associated with the pulsatile wave that is the direct result of said contractions. Pairing a

light emitting diode with a photoreceptor, PPG sensors monitor changes in light

absorption that accompany cyclical increases and decreases in the amount of red blood

cells moving in rhythm with the heart’s contractions. Common locations for these sensors

include the fingertip and ear lobe, both of which are sites with well-distributed capillary

beds. Additionally, fingertips and earlobes are generally exposed and easy to access,

reducing the potential discomfort of having to access regions typically covered by

clothing, as can be the case when recording ECG data.

1 The data used in the present two studies were drawn from a sample of extremely inhibited and anxious

preschoolers. Anecdotally, we had several children who found the application of a Velcro strap around their

finger unbearable and refused to wear the device.

19

Simultaneously captured PPG and ECG signals reveal how the different

physiological and physical sources generating each signal manifest (see Figure 2.3). Both

signals contain obvious peaks that can be used as regular markers of heart beats. PPG

signals, however, lack the sharp signal deflections that characterize ECG recordings. As a

result, the amount of time between local maxima and local minima associated with each

peak in the PPG signal is much longer than the corresponding time associated with local

minima and maxima at the site of peak electrical activity in the ECG signal. The very

practical problem this presents is that the amount of time within which occurrence of a

beat could be identified is much larger for PPG than ECG data. This property means that

any algorithm designed to detect heart beats using a PPG signal has a wider target to hit

when marking the timing of each beat. The wider interval also means that identification

of heart beat timing is more easily influenced by natural and artificial sources of

interference (i.e., arrhythmias or motion artifacts). In spite of these potential downsides,

the peak-to-peak (PP) intervals that can be detected using PPG sensors show good

Figure 2.2 Screenshot of photoplethysmogram signal with artifacts in IBI VizEdit

20

correspondence with the RR intervals used to identify peaks in the ECG waveform

(Bolanos, Nazeran, & Haltiwanger, 2006; Giardino, Lehrer, & Edelberg, 2002; Selvaraj,

Jaryal, Santhosh, Deepak, & Anand, 2008).

The ability to integrate findings collected using both PPG and ECG technologies

is certainly a benefit to the field. Yet, some challenges still remain as researchers utilize a

wide variety of hardware and techniques to extract measures of heart rate and heart rate

variability when using heart rate signals (Quintana et al., 2016; Schäfer & Vagedes,

2013). This heterogeneity in approaches is also reflected in the plethora of existing

techniques and tools and may be one of several reasons that, until recently, the

development of clear reporting standards in this field have lagged (Laborde et al., 2017;

Quintana et al., 2016).

Figure 2.3 AcqKnowledge screenshot of simultaneously collected electrocardiogram

(middle) and photoplethysmogram (top) data

21

Understanding Common Measures of Cardiac Activity

Heart Rate/Heart Period

The simplest measure of cardiac activity is the rate at which a heart beats on

average. Depending on the particular field of study, researchers may prefer to calculate

either heart rate (typically beats per minute) or heart period (time between successive

heart beats). Note that one measure is the inverse of the other. There are multiple

physiological factors that influence heart rate (Saul, 1990). As a result, while heart rate

and heart period can be used to measure reactivity to a stimulus (Hamilton & Alloy,

2016) or overall health (Acharya, Joseph, Kannathal, Lim, & Suri, 2006), changes in

heart rate are difficult to tie back to a specific physiological process when no other

information about the individual is available.

Standard Deviation of the Normal-Normal Interval

The standard deviation of normal-to-normal intervals (SDNN) is a measure of

total heart rate variability following the identification and removal of ectopic beats (i.e.,

beats that deviate from the normal heart rhythm) and/or other artifacts. As a measure of

total beat-to-beat variability in heart period, SDNN has several physiological sources.

Parasympathetic inputs affect variability within the respiration cycle (see below), but

interbeat intervals are also modified over longer periods by other physiological processes

(Saul, 1990). When based on heart rate recordings that last at least as long as 24 hours,

SDNN is considered to be the ‘gold standard’ used for stratifying cardiac risk, with values

below 50 ms indicating elevated risk (Huikuri & Stein, 2013; Kleiger, Miller, Bigger, &

Moss, 1987; Malik et al., 1996). Calculating SDNN is straightforward once a vector of

interbeat intervals has been identified:

22

𝑆𝐷𝑁𝑁 = √∑ (𝑥𝑖−�̅�)2𝑁
𝑖=1

𝑁−1
 (Equation 1)

Where 𝑥 is a vector of normal interbeat intervals of length 𝑁. SDNN over long

observation windows is strongly correlated with ultra-low frequency heart rate variability

(0 Hz to 0.03Hz), low frequency heart rate variability (0.03 Hz to 0.15 Hz), and high

frequency heart rate variability (0.15 Hz to 0.40 Hz). Over brief data collection intervals,

variation in heart period as a function of respiration (i.e., parasympathetically mediated)

tends to be the predominant source of SDNN. Contributions to normal heart rate

variability from variation in lower frequency bands tends to increase with the window of

observation (Shaffer & Ginsberg, 2017).

Root Mean Square of Successive Differences

The root mean square of successive differences (RMSDD) is a measure of

variability in sequential beat-to-beat differences in heart period. In contrast to SDNN and

other related measures, which measure variability from a grand mean, RMSSD measures

variability in successive peak-to-peak differences in heart period. As such, RMSSD

provides a much more focused measure of the variability in short-term heart rate changes.

Given the brief period over which change occurs between beats, RMSSD is thought to

largely tap vagally-mediated changes in heart period (Shaffer & Ginsberg, 2017). Despite

the strong correlation between RMSSD and “purer” measures of vagally-mediated heart

rate variability (Kleiger, Stein, & Bigger, 2005), the specific properties of vagal influence

on RMSSD values remain poorly understood (Penttila et al., 2001; Schipke, Pelzer, &

Arnold, 1999). The formula for calculating RMSSD represents a straightforward time-

series measure of signal variability:

23

 𝑅𝑀𝑆𝑆𝐷 = √∑ (𝑥𝑡+1−𝑥𝑡)2𝑁−1
𝑡=1

𝑁−1
 (Equation 2)

Where 𝑁 is the number of total normal-to-normal successive interbeat intervals, 𝑥. The

nature of this equation highlights an additional difference between SDNN and RMSSD,

as the latter explicitly leverages the time-series nature of the data and the former largely

ignores this property.

Respiratory Sinus Arrhythmia & High-Frequency Heart Rate Variability

Respiratory sinus arrhythmia (RSA) and high-frequency heart rate variability

(HF-HRV) are each calculated in slightly different manners, despite the fact that both

measures are closely tied to vagally-mediated heart rate variability (Saul, 1990; Shaffer &

Ginsberg, 2017). RSA is variation in the timing between successive heart beats as a

function of the respiration cycle. During inhalation, heart rate increases with the influx of

fresh oxygen from the lungs. Exhalation is associated with a drop in heart rate by

comparison. The specific quantification of RSA is generally achieved using Porges’

polynomial moving window algorithm (Porges, 1985). Importantly, Porges’ moving

polynomial method requires a file of edited interbeat intervals as its only input. Other

methods for obtaining measures of RSA exist as well. For instance, certain recording

configurations allow for the simultaneous collection of heart and respiration rate via

different sensors. Proprietary software is then capable of taking these two different

signals and using them to calculate RSA values (e.g., AcqKnoweldge; Biopac Systems,

2016). Both approaches have been shown to be highly correlated in the past (Denver et

al., 2007). Unfortunately, both approaches are also “black boxes” in the sense that the

specific formulae and programming rules that underlie the Porges method of calculating

24

RSA and the values generated by proprietary software are not always easily accessed by

researchers (i.e., these resources and tools are often not open-source).

As an alternative to Porges’ adaptive moving polynomial algorithm or the

simultaneous collection of both respiration and heart rate, researchers can perform

spectral analyses of the data. Spectral analyses are used across a number of fields,

typically ones in which the periodic properties of a signal are of interest. Figure 2.4

depicts the spectral density of an interbeat interval file derived from five minutes of

continuously collected PPG data. By focusing on either the relative spectral power or

spectral power density within a specific frequency band (e.g., 0.15-0.40 Hz in adults,

0.24-1.04 Hz in children), it is possible to obtain an accurate measure of variability in the

beat-to-beat intervals within the respiration cycle. High-frequency heart rate variability

calculated in this manner has been shown to reliably correlate with other estimates of

parasympathetically-mediated heart rate variability (Shaffer & Ginsberg, 2017). Due to

utilization across a wide range of scientific fields, numerous open-source and proprietary

programs have been developed to aid in power spectral analysis (Barbour & Parker,

2014; Seilmayer, 2016; Stoffer, 2017). Each of these programs requires slightly different

input, produces slightly different output, and relies on slightly different machinery,

differences that can make it difficult to compare and integrate results across studies.

25

Note. Data were collected at from a single seated adult over a 5-minute interval while participating in a

series of simple motor activities. ULF = Ultra-low frequency; LF = Low frequency; HF = High frequency;

HRV = Heart rate variability.

Tonic vs. Dynamic Measures of Variability

Any one of the heart rate variability measures described above can be used to

varying degrees as a static indicator of autonomic regulation of heart rate, or they can be

calculated over time to allow for dynamic modeling of autonomic regulation in response

to varying conditions. Tonic heart-rate variability, especially vagally-controlled heart rate

variability (e.g., RMSSD, RSA, and high frequency heart rate variability), is often used

as a biomarker of emotion regulation capacity (Balzarotti, Biassoni, Colombo, & Ciceri,

2017; Geisler, Vennewald, Kubiak, & Weber, 2010; Thayer & Lane, 2000). More

specifically, higher levels of parasympathetically-mediated heart rate variability at rest

are thought to enable greater flexibility in responding to challenges (Porges, 2007; Thayer

& Lane, 2000). Recent work, however, has begun to suggest that there may be a

Figure 2.4 Spectral analysis of photoplethysmogram-derived interbeat intervals

26

curvilinear relation between tonic measures of heart rate variability and an individual’s

regulatory capacity (Kogan, Gruber, Shallcross, Ford, & Mauss, 2013). These findings

suggest that there may be something of a Goldilocks zone for vagally-mediated heart rate

variability at rest, which is to say that especially high or especially low levels of tonic

heart rate variability may each prevent the initiation of socially and emotionally adaptive

responses, albeit in different ways (Kogan et al., 2014, 2013; Miller, Kahle, & Hastings,

2017).

For many research questions, tonic levels of heart rate variability provide little

insight. Instead, how vagally-mediated heart rate variability changes in response to

certain tasks may be more theoretically relevant. There are two general approaches to

modeling dynamic changes in heart rate variability. The first involves calculating a

summary score for an entire task and then determining the difference between that

average task score and some baseline or reference score, typically derived from another

task or condition. Depending on the specific measure used, recommendations for task

duration vary, with measures of RSA and high frequency heart rate variability typically

requiring a longer window to obtain stable estimates than RMSSD (Shaffer & Ginsberg,

2017). The second common approach is to break the interbeat interval file into smaller,

equally sized epochs, calculate a measure of heart rate variability for each epoch and then

analyze the data using non-linear growth models (Miller et al., 2013). As with task

duration, the epoch length would generally need to be longer for measures of RSA and

HF-HRV than for RMSSD.

Broken into epochs or tasks, measures of heart rate variability can either remain

the same, increase, or decrease. When measures of vagally-mediated heart rate variability

27

increase over time it is referred to as augmentation. Vagal suppression, sometimes

referred to as vagal withdrawal, occurs when measures of vagally-mediated heart rate

variability decrease. Augmentation is thought to underlie attention and complex cognitive

activity. By comparison, vagal withdrawal in response to challenging and/or stressful

tasks is thought to underlie an individual’s ability to effectively recruit metabolic

resources and respond adaptively to challenging environmental demands (Calkins, 1997;

El-Sheikh & Buckhalt, 2005; Miller et al., 2013). Highlighting the importance of good

design, on their own, augmentation and withdrawal are neither adaptive nor maladaptive.

Dynamic changes in heart rate variability are only interpretable when specific

tasks/conditions, the study population, and the measure of heart rate variability are taken

into account (Laborde et al., 2017). It is, therefore, important that any researcher

interested in heart rate variability as a study variable incorporates changing conditions

that vary in theoretically meaningful ways.

Current Editing and Analytic Strategies

The effective processing and editing of heart rate data remains an active area of

research (Couceiro et al., 2012; Elgendi, 2012; Pflugradt, Geissdoerfer, Goernig, &

Orglmeister, 2017; Schäfer & Vagedes, 2013; Shaffer & Ginsberg, 2017). What is clear is

that motion artifacts and naturally occurring trends in the heart rate signal must be edited

to appropriately measure heart rate variability, particularly when variation within specific

frequency bands (e.g., RSA, HF-HRV) is the target measure (Akar, Kara, Latifoǧlu, &

Bilgiç, 2013). For methodologies that rely on the analysis of interbeat intervals, the

common starting point is turning the raw heart rate waveform into a separate file of

interbeat intervals. Most programs achieve this goal algorithmically with a set of

28

mathematical rules used to identify local maxima (peaks) and/or minima (troughs) in the

waveform (Akar et al., 2013; Lu et al., 2008; Sukor et al., 2011). The distance in time

between the peaks can then be used to calculate interbeat intervals. As measures of

successive changes in heart period, the file of interbeat intervals then becomes the main

focus of editing and analysis.

After creating a vector of interbeat intervals, editing approaches diverge. One of

the earliest editing techniques involved the manual identification of aberrant interbeat

interval values (MxEdit: Porges, 1988). MxEdit is a MSDOS-based program that was

later updated and released for Windows with a graphic user interface known as Cardio

Edit (Brain-Body Center, 2007). Cardio Edit and its predecessor MxEdit allow

researchers to alter the interbeat interval file using one of three general functions. Editors

can divide a point into two (or more) separate points, a useful editing strategy if a peak

detection algorithm skips over a peak incorrectly. They can combine points, often

necessary when an early beat is incorrectly identified in the original file. Finally, these

programs also allow the averaging of two or more successive points. While using these

functions, editors must always be wary of over-editing or under-editing as each will bias

measures of heart rate variability downward or upward, respectively.

Despite being the gold standard for processing and analyzing heart rate data,

manual editing can be prohibitive in terms of the need for personnel. Algorithmic and

model-based automated editing tools offer an attractive alternative for research teams

working with limited staff. Recently, machine learning techniques have been added to the

editing toolbox, and comparisons with manually edited versions of the same files have

yielded promising results (Hegarty-Craver et al., 2017). Building on this work, it is

29

possible to envision a potential marriage of methods in which trained editors employ a

machine learning algorithm for the initial editing pass and then choose to accept, reject,

or modify the algorithm’s proposed edits. Such an editing process would leverage the

speed and efficiency promised by model-based and machine learning editing techniques

while retaining the accuracy of manual editing. The proposed set of studies offers a

modest step in this general direction by combining advanced modeling with human

oversight of the final edited file.

Identifying and Managing Low Quality Data

To date, very little in the way of standards regarding the editing of heart rate data

exist. As pointed out in a pair of recent reviews (Laborde et al., 2017; Quintana et al.,

2016), researchers vary widely in their transparent reporting of heart rate editing

decisions, and there exist no empirically-based standards for distinguishing usable data

from data that have been too corrupted by artifacts to warrant inclusion in analyses.

Strategies for dealing with heart rate data that include a large number of artifacts are

similarly inconsistent from study to study. A common approach is to exclude certain

segments of data from final analyses (Quintana et al., 2016), a questionable decision from

a statistical standpoint that likely results in non-random missingness, particularly if

participants are exposed to different conditions during data collection. Alternatively, it is

possible to manually edit these sections to bring the resulting interbeat interval values

within ostensibly reasonable values. However, in some cases the underlying signal

provides little information about an individual's heart rate, making editing choices

somewhat arbitrary. This is particularly true when artifacts affect the signal over several

seconds, disrupting the detection of multiple sequential beats. The precise conditions

30

under which manually editing these sections results in biased estimates, particularly for

PPG-derived data, is unclear and should be of concern to psychophysiologists working

with these data.

Introducing IBI VizEdit

IBI VizEdit (Barstead, 2018) is a recently developed RShiny application designed

to exploit R’s extensive statistics and graphics libraries in order to improve editing

options for researchers working with PPG data. IBI VizEdit is intended to add to existing

editing tools in several meaningful ways. To start, the program is completely open-

sourced relying on R (https://cran.r-project.org/) and Stan (http://mc-stan.org/). The beta

version of the program can be found on GitHub (github.com/matgbar/IBI_VizEdit), with

plans for the development of a complete R package that is centered around the program’s

editing interface. IBI VizEdit promises no black boxes, and its core code is available to

any interested researcher who wants to understand the specific choices being made at

each stage of data processing. In short, the development of IBI VizEdit is adhering as

closely as possible to principles of the Open Science Framework

(http://openscienceframework.org).

The program includes practical benefits in addition to its attempts at scientific

integrity. For one, it was created, first and foremost, for editing PPG signals, from start to

finish. From raw file to cleaned, processed, and summarized data, IBI VizEdit prevents

researchers from having to move between multiple specialized programs each capable of

performing only one step of the data preparation process. In an important boon to

improving editing practice transparency, the program also provides a detailed summary of

all the edited points retained in the final file. As a result, the number of edits, their type,

31

and their relative location in the interbeat interval series are all output in a simple

summary file once editing is completed. The reporting of these simple but comprehensive

editing statistics will hopefully go a long way toward motivating increased transparency

in summarizing the amount and type of editing required.

Finally, IBI VizEdit includes a novel imputation technique, designed to be an

alternative to manual editing that often leads to artificial reductions in variability. The

driving engine of this imputation feature is a Gaussian Process model, several parameters

of which need to be set by the user. The incorporation of a Gaussian Process imputation

model has the potential to retain naturally occurring heart rate variability in sections of

raw data where the true heart rate signal is completely unidentifiable, provided

sufficiently ‘good’ data exist on either side of the section targeted for imputation.

Investigating the specific parameterization of the imputation model as well as its

accuracy represent major components of the present report.

Summary and Current Research

Heart rate variability is an evolutionarily-rooted biomarker that taps the functional

connectivity of the central autonomic network, a collection of neural circuits,

physiological feedback loops, and chemical signaling pathways responsible for altering

internal states to match external environmental demands (Thayer & Lane, 2000). The

degree to which this network is functionally connected generally corresponds to the

capacity for generating adaptive social and emotional responses. Variation in functional

connectivity of the central autonomic network, as measured by vagally-mediated heart

rate variability, may therefore carry meaningful diagnostic information (Beauchaine &

Thayer, 2015). Researchers or clinicians interested in measuring heart rate variability can

32

do so using ECG, a more established, more precise, if slightly more invasive technique

compared with PPG, which is gaining in popularity in certain research contexts2. In

addition to recording options, researchers have their choice of heart rate variability

measures, some of which correspond to different underlying physiological processes

(Saul, 1990; Shaffer & Ginsberg, 2017). To achieve accurate summary values for these

different variability metrics, raw signals need to be processed and edited. The techniques

for processing and editing heart rate files have largely been developed for use with ECG

signals. While there are a number of approaches that have been used to process PPG data,

no discipline-wide standards have taken hold, to the field’s detriment.

IBI VizEdit was created to streamline and standardize PPG data processing,

editing, and analysis. In addition to basic manual editing strategies included in other

programs (e.g., Cardio Edit; Brain-Body Center, 2007), IBI VizEdit pushes the editing

strategy envelope somewhat. Specifically, the development of a model to guide

imputation is a key novel addition to IBI VizEdit and could represent a natural evolution

in the mixing of automated editing with manual review. Finally, to support

standardization of reporting in this area of research in general, accessible summarized

information is automatically generated based on edited data points contained in the final

file. Following an editing session, the program outputs all edited and raw files, separated

by task if timing information is available for different conditions. This feature ensures

that a complete and comprehensive record of editing decisions is saved each time the

program is used.

2 Other collection methods exist, but PPG and ECG recordings make up the vast majority of published

heart rate data (Quintana, Alvares, & Heathers, 2016).

33

The present set of studies represents an initial evaluation of the program. Study 1

examined the degree to which the different parameterizations of several proposed

imputations models effectively recovered true heart rate variability values. Study 2

provided a more direct assessment of the full deployment of IBI VizEdit, and in so doing

offered a preliminary probe into the ability of editors to reliably use the program as well

as the validity of the values generated from files edited within this newly created

software.

34

CHAPTER 3

The only relevant test of the validity of a hypothesis is comparison of prediction with

experience.

- Milton Friedman

An Overview of IBI VizEdit

Peak Detection Algorithm

Before any edits can be made, the first step in processing raw heart rate data is to

identify the relative location of heart beats in time. To accomplish this task, the peak

detection algorithm incorporated in IBI VizEdit involves several programmatic steps.

First, the raw file is smoothed using a low-pass median filter to reduce signal spiking

(Tukey, 1977), followed by a cubic smoothing spline (Shumway & Stoffer, 2017) (see

Figure 3.1)3. Then, the smoothed file is de-trended (Akar et al., 2013). Following these

preliminary processing steps, a differenced time series is derived by subtracting

successive data points from one another:

 𝑥𝐷 = 𝑥𝑡+1 − 𝑥𝑡 (Equation 3)

The resulting vector of differenced values, 𝑥𝐷, has several useful properties. The first is

that, in a well-defined periodic or quasi-periodic signal, difference values will switch

from positive to negative at each peak (i.e., where a first-order derivative of the signal

would be equal to 0). As the wave approaches a peak, each successive value is higher

than the previous, leading to positive difference scores. Following the peak, the

difference scores turn negative as each successive value is lower than the previous value

in the original heart rate signal (see Figure 3.2). Using this property, the point at which

3 Code for all figures created for the dissertation can be found in Appendix C

35

positive values transition to negative values marks a local peak. The code in Appendix

A.1 leverages these features to identify maximum values within a user-defined

bandwidth. The code in Appendix A.2 converts the output of the peak detection

algorithm into a vector of inter-peak intervals.

Note. These data were not taken from any of the cases used in the present data set. Instead, they are an

example of data collected in an fMRI recording session, which is one of the factors causing the additional

noise that was recorded in the signal.

Figure 3.1 Effects of pre-processing photoplethysmogram data with random noise

36

The next step of program is to use this basic peak detection and inter-peak interval

machinery to iterate over several different bandwidths (see Appendix A.3). The

bandwidth in this set of functions defines how wide an interval to use when identifying

peaks. With a slowly oscillating and occasionally disrupted underlying signal, finding the

specific location of a given peak can be difficult without defining a specific bandwidth

within which to look. While iterating over different bandwidths, the program optimizes

the final vector of inter-peak intervals by minimizing first the RMSSD and then the range

of the interbeat intervals created, using each bandwidth attempted, thereby ensuring that

extreme values and very large deviations in the timing of successive heartbeats are

reduced in the resulting vector of interbeat intervals. The bandwidths over which the

program iterates are restricted to values between .15s and 0.75s. These two values

correspond to half of the mean interval for a heart beating 200 times per minute and half

Figure 3.2 Identifying peaks and troughs in periodic data using IBI VizEdit's peak

detection algorithm

37

the mean interval of a heart beating 40 times per minute, respectively. Both values

represent extremes in a typical psychophysiological experimental context. Figure 3.3

displays the results of this iterative peak detection algorithm applied to a 10-second

segment of simulated data.

Note. The mean period for this simulated data was .5904, and the mean estimated period for the 10-second

segment was .5903, demonstrating an excellent degree of correspondence between obtained and expected

estimates.

When tasked with identifying peaks in a highly controlled, periodic signal, it is

not surprising that the algorithm correctly identifies the relative location of peaks. A more

meaningful test is the algorithm’s efficacy when challenged to find interbeat intervals

from PPG data. As seen in Figure 3.4, when the PPG signal is relatively well-defined and

regular, the peak detection algorithm is largely successful at identifying peaks and

converting the PPG data into interbeat intervals (the black line with red points). However,

the quality of the algorithm’s output is largely governed by the quality of the original

Figure 3.3 Results of iterative peak detection algorithm applied to simulated data

38

PPG data (see Figure 3.5), a fact that serves to highlight the importance of manual

editing after implementing the peak detection algorithm.

Manual Editing

After finding the interbeat intervals, IBI VizEdit allows users to seamlessly

overlay the de-spiked, smoothed, and de-trended PPG signal with the resulting timing of

Figure 3.5 Screenshot depicting peak detection algorithm performance with artifact-free

data

Figure 3.4 Screenshot depicting peak detection algorithm performance with data

including artifacts

39

interbeat intervals identified (see Figure 3.4). The editor can then simultaneously inspect

interbeat intervals and the underlying signal that led to their detection to better inform

editing decisions. The basic editing strategies incorporated in the program are modeled

after editing choices available in the interbeat interval editing program Cardio Edit

(Brain-Body Center, 2007). Editors can choose to combine two or more sequential

interbeat intervals when signal noise results in the erroneous identification of an early

beat (see Figure 3.6). In other instances, a heartbeat may be skipped if the signal is

particularly distorted (see Figure 3.7). When the peak detection algorithm fails to

identify a heartbeat, the editor can divide the resulting inflated interbeat interval value

into two or more points, corresponding to the approximate number of beats that should

have been identified in the preceding segment. Finally, when subtle signal distortions lead

to minor beat-to-beat deviations from each other that are not consistent with the overall

pattern (see Figure 3.8), the editor can choose to average these beat-to-beat differences.

In addition to the ability to combine, divide, and average points, editors can manually

delete erroneous points as well as add missed points directly to the file itself, using the

processed PPG signal as a guide.

These five operations – combining, dividing, averaging, deleting and adding

points – represent the backbone of manual heart rate editing and have been included in,

what is likely the most widely used manual heart rate editing program to date, Cardio

Edit (Glenn et al., 2018; Guy, Souders, Bradstreet, Delussey, & Herringto, 2014; Kenkel,

Suboc, & Carter, 2014; Lamm, Porges, Cacioppo, & Decety, 2008; Lewis, Furman,

McCool, & Porges, 2012). However, the integration of these operations in Cardio Edit is

not always straightforward as editors cannot use the first three functions when using the

40

latter two and vice versa. Ideally, editors should not have to load and re-load the same file

to make use of different sets of manual editing functions. In addition to being a self-

contained processing and editing program, the simultaneous incorporation of all five

functions at once in IBI VizEdit represents a modest practical improvement in this regard.

The more substantive extension of existing manual editing techniques is through the

incorporation of advanced time series modeling that has the potential to guide

researchers’ decisions when working on sections of data that are particularly difficult to

edit. Combining, dividing, and averaging points are ultimately crude solutions to dealing

with problematic sections of heart rate data. A model-based approach has the capacity to

improve on these basic tools by suggesting a set of reasonable locations for the timing of

heart beats, based on the individual’s own cardiac activity.

Figure 3.6 Screenshot depicting misidentification of an early heartbeat

41

Gaussian Process Models

Due to the ever-increasing power of standard desktop computers, analytic and

modeling options once deemed too computationally demanding to be practically useful

can now be implemented in open-source programming languages (e.g., R, Python). These

improvements make it possible for IBI VizEdit to incorporate an advanced imputation

feature that relies on Gaussian process modeling using Stan and rstan (http://mc-

Figure 3.8 Screenshot depicting failure to identify a heartbeat

Figure 3.7 Screenshot depicting IBI signal deflection that requires averaging of two

points

42

stan.org/). Gaussian process models can be especially useful for modeling time-series

data, particularly when there are known sources of signal variation (Gelman et al., 2013;

Rasmussen & Williams, 2006).

The application of these models to heart rate data relies on the fact that univariate

time series data can be decomposed as the sum of an infinite number of Gaussian

processes (Gelman et al., 2013). The imputation models created for the proposed set of

studies included up to four different processes thought to explain covariation in PPG

signal values across time (see Appendix A.4-A.6). This new imputation component of

IBI VizEdit is the program’s least well-tested editing feature, and understanding the

potential costs and benefits of utilizing Gaussian process models for data imputation

represents a key component of the current report.

Testing of different imputation models unfolded in order of model complexity,

beginning with a two-process model that incorporated a single decay function and a

single function designed to model the contribution of the individual’s average heart rate

to the covariance between values in the PPG signal. Building on this relatively simple

two-process model, three- and four- process models were also tested in an attempt to

account for sources of heart rate variability within different frequency bandwidths (see

Equation 4).

 𝑓(𝑡) = 𝑔1(𝑡) + 𝑔2(𝑡) + 𝑔3(𝑡) + 𝑔4(𝑡) + 𝜖𝑡 (Equation 4)

The function 𝑔1(𝑡) (Equation 5) was included in every version of the imputation

function. The function is defined by the squared exponential covariance equation k1,

which models a general decline in the covariance between two points as a function of the

amount of time separating the points in the PPG waveform. Another way of thinking

43

about this equation is that, as the time between two points increases, the expected

covariance approaches 0. This approach is similar to autoregressive specifications of

covariance matrices without the need to specify, a priori, the order of the autoregressive

model. Instead, the specific amount of time affecting the decay rate is modeled as the

parameter l1, and it is a value that can be estimated on a case-by-case basis. The amount

of overall variability in the original series accounted for by this first process was

represented by 𝜎1
2, another value that varies from participant to participant.

 𝑔1(𝑡)~𝑁(0, 𝑘1) (Equation 5)

𝑘1 = 𝜎1
2exp (−

(𝑡 − 𝑡′)2

2𝑙1
2)

The second Gaussian process (see Equation 6) was specified as a means of

addressing the quasi-periodic nature of heart rate data (see Gelman et al., 2013 for a

related example, p. 505-506, Equations 3 and 4). This second function allowed the model

to incorporate the changing periodic nature of an individual’s heart rate, 𝑓𝐻𝑅, when

predicting missing values, a problem often termed non-stationarity. Non-stationary time-

series such as heart rate data are particularly difficult to model mathematically, and

typical approaches often involve imposing or assuming some form of stationarity prior to

conducting further analyses (Shumway & Stoffer, 2017). The covariance function 𝑘2

offered a means of addressing this well-established statistical problem by adding a

squared exponential covariance function to the time-frequency covariance function that

constitutes the first half of 𝑘2. The upshot of this parameterization is that, as the distance

in time between two points increases, the model-predicted covariance between the points,

which, in this this equation, is driven mainly by the model-estimated heart rate parameter,

decreases.

44

 𝑔2(𝑡)~𝑁(0, 𝑘2) (Equation 6)

𝑘2 = 𝜎2
2exp (−

2𝑠𝑖𝑛2(𝜋(𝑡 − 𝑡′)𝑓𝐻𝑅)

𝑙2
2) exp (−

(𝑡 − 𝑡′)2

2𝑙3
2)

In addition to these two, relatively simple covariance functions, two more

complex processes were also tested to determine if their inclusion yielded any

improvement in imputation performance. The two functions, 𝑔3 and 𝑔4 were intended as

a means of incorporating sources of high frequency (i.e., respiration) and low frequency

(i.e., background metabolic processes) heart rate variability into the model. The hope was

that the inclusion of these known sources of heart rate variation in the imputation model

would improve the prediction of missing values. Function 𝑔3 was based on a covariance

function that incorporated variation in heart rate as a function of respiration, 𝑓𝑅, and took

the following mathematical form:

 𝑔3(𝑡)~𝑁(0, 𝑘3) (Equation 7)

𝑘3 = 𝜎3
2exp (−

2𝑠𝑖𝑛2(𝜋(𝑡 − 𝑡′)𝑓𝐻𝑅)

𝑙4
2) exp (−

2𝑠𝑖𝑛2(𝜋(𝑡 − 𝑡′)𝑓𝑅)

𝑙5
2)

Function 𝑔4 was designed to incorporate sources of low-frequency heart rate

variability. To reduce the burden of estimating another parameter, the covariance function

fixed the low-frequency value at .1 (the equivalent of an event occurring once every 10

seconds), a common threshold used to separate low and high-frequency sources of heart

rate variability (Shaffer & Ginsberg, 2017). Thus, the Gaussian process 𝑔4 performed

much the same function as 𝑔3, only for slower occurring changes to heart rate patterns.

𝑔4(𝑡)~𝑁(0, 𝑘4) (Equation 8)

𝑘4 = 𝜎4
2exp (−

2𝑠𝑖𝑛2(𝜋(𝑡 − 𝑡′)𝑓𝐻𝑅)

𝑙6
2) exp (−

2𝑠𝑖𝑛2(𝜋(𝑡 − 𝑡′). 1)

𝑙7
2)

45

The code for the three Gaussian process imputation models is available in Appendices

A.4-A.6.

Implementing Gaussian Process Models in IBI VizEdit

 One way of thinking about the different equations outlined in the preceding

section is that they represent a series of processes thought to account for the covariance

between any two values in the original heart rate signal, as a function of time. Once

appropriate parameter estimates for each function are found, the model can be used to

generate data for any segment in the time series. The main software used for the Bayesian

estimation of these models was Stan, which has some speed advantages over other

Bayesian analysis software (e.g., JAGS/BUGS) as it is written in compiled C++.

Additionally, the No-U-Turns-Sampler (NUTS), a modification of the Hamiltonian

Monte Carlo sampling algorithm is computationally efficient and does not require the

distributional conjugacy required of other Bayesian samplers (e.g., Gibbs) to generate

posterior distributions for model parameters (Stan Development Team, 2017).

 These computational advantages notwithstanding, there were still practical

advantages to consider when implementing these models. Most importantly, establishing

defensible approaches to shrinking the parameter space each model had to explore is an

important means of reducing computational burden and improving model convergence.

Mechanistically within the estimation of the parameters this occurs because a smaller

parameter space improves the likelihood that the sampler, on two or more independent

chains, converges on similar posterior distributions for each parameter being estimated,

and that convergence occurs with fewer warm-up iterations (Gelman et al., 2013). Setting

appropriate, strict priors for the length (𝑙) and variance (𝜎2) terms that titrate the

46

contributions of each process to the combined model could certainly restrict the range of

values for the sampler to iterate over. However, these values will necessarily vary from

case to case and even within different segments of the same file, making a single set of

strong priors difficult to specify. An alternative to setting strict priors would be to set

relatively uniformed priors, forcing the model to infer the posterior distributions from the

data. Although, choosing to set diffuse priors for these hyperparameter distributions to

address the problem has notable practical downsides, as doing so leads to increased

model run time while the sampler explores the much larger parameter space.

 As a middle-ground solution, the specific implementation of Gaussian process

models in IBI VizEdit relies on a two-step process. First, estimates are determined for the

length, variance, and respiration (when included) parameters incorporated in each

function via maximum likelihood estimation. Specifically, this initial step is executed

using a quasi-Newtown optimization algorithm (Stan Development Team, 2017) and

reduces the parameter space by eliminating the need to specify priors for each

hyperparameter. In the second step of this process, which relies on Bayesian estimation,

hyperparameters for each process are then fixed to their estimates derived in Step 1, and a

posterior distribution is estimated for the imputed values as well as the heart rate

frequency parameter. In practice, when using IBI VizEdit, users can provide prior

information about heart rate using the interbeat intervals surrounding the section of data

targeted for imputation. In the current report, the prior distribution for heart rate

frequency was informed by the mean and standard deviation of the interbeat intervals

contained in segments of artifact-free data, values easily determined from each case’s

file.

47

Research Overview

The data used in the current research were obtained from an ongoing NIMH-

funded intervention study (MH103253-04; PIs A. Chronis-Tuscano & K. H. Rubin). The

primary aim of this intervention study was to compare and contrast two programs for

extremely anxious and inhibited preschoolers. A total of 151 children (aged 3 years, 9

months to 5 years, 4 months), and their parents, were randomly assigned to one of two

treatment groups. The first treatment condition was Cool Little Kids, a well-established

psychoeducation program for parents rooted in cognitive-behavioral therapeutic practices

that has been shown to reduce anxiety among extremely inhibited young children (Bayer

et al., 2011; Mifsud & Rapee, 2005; Rapee & Jacobs, 2002; Rapee, Kennedy, Ingram,

Edwards, & Sweeney, 2005). Cool Little Kids requires approximately 12 hours when

delivered in small groups and is typically broken into manageable chunks of time (e.g.,

six weekly two-hour sessions). The second treatment condition was the Turtle Program, a

multicomponent intervention for extremely shy and inhibited preschoolers that

incorporates parent psychoeducation, parent-child interaction therapy, and social skills

training (Barstead et al., 2018; Chronis-Tuscano et al., 2015; Chronis-Tuscano, Danko,

Rubin, Coplan, & Novick, 2018). The Turtle Program was also designed to take

approximately 12 hours to deliver, and the modules are segmented into eight 90-minute

sessions.

As part of this intervention study, heart rate data were obtained at three different

time points for both parents and children: prior to the start of the intervention; halfway

through the intervention; and following the intervention (see Figure 3.9). In collecting

these data at multiple time points, the principal investigators hoped to explore

48

physiological moderators and mechanisms of treatment response. The complete dataset,

therefore, contains heart rate data collected from both adults and children at three

different time points as they participated in one of two different interventions. To

minimize overlap between the samples used in Study 1 and Study 2, data collected from

parents and children assigned to Cool Little Kids were used in Study 1. Study 2 relied

solely on data from children assigned to the Turtle Program, specifically their

physiological data collected prior to the start of treatment. Study 2 also made use of play

observation data collected in children’s preschool classrooms.

Note. School observations were collected 2 weeks prior to the start of the intervention, while other pre-

assessment measures could be collected up to 4 weeks before the first treatment session.

Study 1: Evaluating the Novel Imputation Tool in IBI VizEdit

Overview

The least tested component of IBI VizEdit is its incorporation of an imputation

model based on a composition of Gaussian processes. This novel imputation feature

therefore represents a natural starting point for the methodological investigation of IBI

VizEdit. Study 1, then sought to address the following two broadly construed questions:

(1) Which of the three imputation models does the best job of recovering true (i.e.,

original) heart rate variability values? And: (2) Under what conditions do each of the

Figure 3.9 Intervention study timeline

49

three programs perform the most efficiently (i.e., return the smallest variance in

estimates)? Most accurately (i.e., are unbiased in their estimates)?

Data from parents and children enrolled in Cool Little Kids were used to evaluate

the different candidate models. Testing this component of the program with existing data

required identification of artifact-free data, a task completed by a pair of trained editors

who reviewed raw PPG files from parents and children looking for sections that

contained at least 3 minutes of continuously collected data that was artifact-free. A total

of 153 different heart rate files were prepared in time for inclusion in the present study,

each of which underwent visual review and sorting.

The code used to create models and otherwise summarize the data is available in

Appendix B. Briefly, the three different models were used to recover randomly targeted

sections of artifact-free PPG data under varying conditions that included altering the size

of the window to be imputed, the sampling rate of the data used for imputation, and the

window length of the surrounding data used for imputation. The efficacy of each

Gaussian process imputation model was evaluated based on the degree to which a

measure of heart rate variability (RMSSD from the imputed section) matched original

values. Additionally, model run time was calculated as a means of understanding the

practical costs of using each model. Finally, several diagnostic values and plots from each

imputation run were stored to evaluate potential factors that govern model convergence

and data-model fit.

Participants

 Data in Study 1 were taken from children and parents who had been assigned to

receive the Cool Little Kids intervention. All laboratory assessments (up to three per

50

participating parent-child dyad, N = 76) for which physiological data were successfully

recorded and prepared in time for analysis (Nassessments = 153) were included in the initial

sample frame. Overall, children enrolled in the Cool Little Kids program were somewhat

racially diverse (44.59% White, 28.38% Mixed/Other Races, 17.57% Black/African-

American, and 9.56% Asian/Asian-American) and predominantly male (54.05% boys vs.

45.95% girls) with an average age of 53.22 months (SD = 5.52). The majority of

participating parents were the child’s mother (68.92%) with an average age of 39.49

years (SD = 5.74).

Procedures

Heart Rate Data Collection: Hardware and Software. All data used in Study 1

were collected using the Biopac MP150 data acquisition system at a sampling rate of

2000Hz. During the assessment, target children and their parents wore separate wireless

Bio-Nomadix PPG-ED transmitters (Biopac Systems, 2018). The receivers for both the

child and parent devices were attached to the MP150 acquisition device in a control room

approximately 9 feet from the parent and child during the assessment. Concurrent with

the collection of heart rate, two separate video streams were recorded in the room. The

first captured video of the child from a wall-mounted camera feed, and the second

captured the presentation screen where videos and other visual cues were presented

during the assessment. These two video streams were used by research assistants to

identify the time boundaries for the four different conditions that occurred during each

51

assessment: Video (repeated three times), Clown, Kids, and Introduction (see Figure

3.10).

Once in the assessment room, the experimenter attached the Bio-Nomadix PPG-

ED wireless transmitter to the parent first and then the child. The transmitter was always

attached to the parent’s (or child’s) left arm. Experimenters then used a Velcro strip to

attach the light-emitting diode and photoreceptor combination that make up the standard

Biopac PPG sensor. The sensor was positioned on the left index finger, with the

photosensor and light-emitting diode oriented toward the palmar surface of the digit. The

PPG sensor was then fastened in place using Velcro with care taken to not secure the

sensor too tightly so as to reduce or limit blood flow or too loosely allowing the sensor to

Figure 3.10 Graphic depiction of varying conditions during physiological assessments

52

easily change positions on the participant’s finger. Once both the parent and the child

sensors were attached, the experimenter introduced “Freddy the duck,” a rubber duck

fixed to the child’s desk. The child was asked to help keep Freddy warm by keeping his

or her hand resting on his back. If the child began to move his or her hand or fingers

during the observation, the experimenter would gently remind the child to remain still

and to help keep Freddy warm.

While this physical setup took place, a trained technician in the control room

monitored the parent and child PPG waveform to ensure the sensors were correctly

recording data before the start of the first condition (Video 1). The technician was also

responsible for initially triggering the recording in Observer 12.0, a program designed to

support the collection and coding of observational data (Noldus, 2015). The use of

Observer in the present study allowed for the synchronization of heart rate data and the

two video feeds recorded during each assessment. Biopac’s proprietary software

AcqKnowledge 4.4 managed collection of the raw PPG signal (Biopac Systems, 2016).

Upon completion of the physiological recording session, the raw data file was converted

into a tab-delimited text file to allow for easier importing of the file into Observer as well

as IBI VizEdit.

Data Re-sampling Design: Testing the Three Gaussian Process Models

Data Selection. Two trained editors independently reviewed 153 raw PPG files to

identify sections of data that contained 3 minutes of continuously collected, artifact-free

signal. After compiling all files that contained at least one 3-minute segment of artifact-

free data (39 segments of child files and 40 segments of parent files), a re-sampling and

53

modeling script iterated over several different conditions, selecting random sections of

data from the targeted files for imputation.

Imputation Window Length. To examine the effect of the total time to be

imputed on model performance, the length of the targeted imputation windows was

randomly determined for each run, drawn from a uniform distribution with a minimum

value of 2 seconds and a maximum value of 8 seconds. In terms of the scripts that

governed the simulation program, the selection of the portion of a given file to impute

occurred first, followed by adjusting the sampling rate of the signal, then the model

sampling rate, and finally the amount of data on either side of the imputation window

used to generate predicted values. Thus, these aspects of the imputation model were

varied within each segment targeted for imputation. Importantly, the three Gaussian

process models executed their re-sampling scripts independently. Thus, while they were

each based on the same basic re-sampling procedures, the three models did not

sequentially attempt to impute the exact same sections of data.

Signal Sampling Rate. The number of data points per unit of time may affect

imputation in one of two ways. The first is that higher sampling rates result in more data

per unit of time and therefore more computationally burdensome imputation runs, leading

to longer model run times. The second is that lower sampling rates reduce the amount of

information the model has access to when tuning parameters and making predictions, and

it is plausible that the imputed values may be less accurate as a result. As part of the

imputation runs, the data re-sampling program ran the same set of imputations for each

segment of data targeted for imputation at two different, down-sampled rates (125 Hz and

250 Hz). Note, the original signal was sampled at 2000 Hz.

54

Model Data Window. When imputing data in a univariate time series, the only

available information that can be used to create predicted values are the data surrounding

the targeted segment. In the present study, the size of the window used to tune the

parameters of the imputation model varied proportionally with the size of the segment

targeted for imputation by a factor of 1x, 2x, or 3x. What this meant is that when the

imputation window was 2 seconds long, data used to impute values were taken from the

2, 4, or 6 seconds immediately preceding and immediately following the imputation

window. The sampling rate of the Gaussian process model data was either 4 Hz, 8 Hz, or

12 Hz. Figure 3.11 offers a visual depiction of how the re-sampling program worked and

the resulting 18 conditions created by the different levels of the independent variables in

this re-sampling study.

Note. RMSSD = Root mean square of successive differences

Bayesian MCMC Sampling Parameters. In the present study, Gaussian process

models were estimated (mostly) within a Bayesian framework. In these models, the total

number of warm-up iterations was fixed at 2000 per Monte Carlo Markov chain followed

Figure 3.11 Depicting of Gaussian process imputation model testing

55

by 500 sampling iterations, upon which imputed values were based. The total number of

chains was fixed at 2. These values, particularly the warm-up and sampling iterations, are

notably lower than recommendations often made for other Bayesian programs (Gelman et

al., 2013; Gelman & Hill, 2007), and this is due, in part, to an efficient sampling

algorithm employed in Stan (i.e., NUTS). These aspects of the imputation models may,

however, warrant further investigation in future research. One component of the present

study, assessing model convergence, may provide a useful foundation for future efforts in

that vein.

Computing Environment. Model Imputation was conducted using a series of R

scripts running on one of three computers. One computer was equipped with an Intel i7-

8700K processor (3.7 GHz) that has 6 cores (12 logical processors with hyper-threading).

The other two computers were each equipped with Intel Xeon E5-1620 processors (3.7

GHz) that each have 4 cores (8 logical processors with hyperthreading, per computer).

The former hardware configuration is unlikely to represent a typical setup in a

psychology laboratory. However, the latter two computers do represent mid-to-high end

hardware that is more likely to be available in a typical laboratory. To reduce the total

amount of time needed to complete the simulation runs, 14 models were run

simultaneously across these three platforms, with 2 logical processors per model

occupied by the MCMC chains in each model.

Measures

Model Fit and Diagnostics. For each simulation run, the model estimated

posterior distributions of heart rate as well as basic convergence criteria for those

distributions. As a means of assessing convergence, the current study relied primarily on

56

�̂� values, a measure of the degree to which two or more independent Monte Carlo

Markov chains converge on similar posterior distributions. Values under 1.1 are typically

thought to be indicative of acceptable convergence (Gelman et al., 2013) and regularly

exceeding a value of 1.1 can be used to distinguish between good and poor model

convergence on a particular parameter’s posterior distribution. Additionally, traceplots of

the heart rate parameter from every model were saved as part of the re-sampling and

modeling script.

Model Run Time. Model run time was determined by subtracting the system date

and time at the start of each model run from the system date and time recorded after the

model’s execution. Because Gaussian process models have a well-defined optimization

problem (the larger the input matrix, the exponentially longer the model run time), it was

important to understand how variation in the imputation models and the data properties

influenced the time cost associated with their use.

Imputation Performance. The accuracy of each imputation run was judged

based on the degree to which each model run recovered original RMSSD scores. That is,

RMSSD values from the original section of data were subtracted from RMSSD values

based on the imputed file. These difference scores provided a means of assessing whether

a given model returned unbiased (i.e., accurate on average) and precise (i.e., less

variable) estimates. Specifically, accurate and precise models would be expected to return

distributions of RMSSD difference scores centered at zero with a relatively narrow

distribution. To evaluate the relative fit of the Gaussian process imputation models, two

additional sets of RMSSD difference scores were created using naïve approaches for

dealing with missing data. The first involved employing a mean replacement strategy for

57

the interbeat intervals in the targeted range. The second relied on a hotdeck replacement

in which interbeat interval values were randomly drawn from the remainder of the file.

Hypotheses and Analyses

Hypothesis 1. Longer windows targeted for imputation were expected to result in

exponentially longer run times. This hypothesis was tested graphically, plotting the total

imputation window on the x-axis and the total model run time on the y-axis.

Hypothesis 2. Increased model complexity was expected to lead to longer model

run times. This hypothesis was tested by comparing average model run times across the

three different Gaussian process models.

Hypothesis 3. Gaussian process models that incorporated more data (i.e., higher

model sampling rate, higher signal sampling rate, and data inputs covering a longer time

range relative to the section targeted for imputation) were expected to be less biased in

terms of recovering heart rate variability scores. This hypothesis is multifaceted in that

multiple aspects of the imputation model may differentially influence the degree to which

the models returned biased estimates on average. Therefore, addressing this component of

the present study entailed the creation of several graphs, with different aspects of each

imputation run plotted on the x-axis and RMSSD difference scores (relative to the

original scores) plotted on the y-axis.

Hypothesis 4. Gaussian process imputation models were expected to be less

biased than a mean replacement strategy or a hotdeck replacement strategy. As with

previous hypotheses, this aspect of the present research was evaluated using a mix of

graphical and analytical approaches, comparing RMSSD difference scores and their

58

variability across the three Gaussian process models and the two naïve missing data

strategies.

Study 2: Reliability and Validity of IBI VizEdit Outputs

Study 2 Overview

The purpose of Study 2 was to examine a real-world deployment of IBI VizEdit.

The data from Study 2 were drawn from the same ongoing intervention study described

in Study 1 of the present report. While Study 1 utilized physiological data obtained from

children and parents who were assigned to receive the Cool Little Kids intervention and

from all available time points, data for Study 2 were taken from participants who had

been randomly assigned to participate in a multicomponent intervention known as the

Turtle Program (Chronis-Tuscano et al., 2015) and only from the first of the three

laboratory assessments. Additionally, Study 2 incorporated measures of children’s play

behaviors, as observed in their preschool classrooms.

Given the nature of the tasks during the laboratory assessment and the inclusion

of play behaviors in Study 2, it is important to stress that children in the present data set

were selectively recruited based on high levels of parent-reported BI. Recruitment efforts

targeted parents of “shy” children, and to be eligible parent-reported BI Questionnaire

(BIQ; Bishop, Spence, & Mcdonald, 2003) scores needed to exceed the 85th percentile

(i.e., ≥ 132).

Being selected on BIQ scores is relevant to the current study because, BI (BI) is a

temperamental trait characterized by the expression of fear and wariness in novel settings

and with unfamiliar individuals (Fox, Henderson, Marshall, Nichols, & Ghera, 2005).

Variation in measures of BI has been consistently shown to be associated with variation

59

in underlying physiology, with autonomic dysregulation being a frequent biomarker of

elevated BI scores (Fox, Nichols, et al., 2005; Kagan, Reznick, & Snidman, 1987, 1988).

In line with the temperamental nature of BI, high levels of BI in early childhood are

predictive of future anxiety disorders, social anxiety disorder in particular (Chronis-

Tuscano et al., 2009; Clauss & Blackford, 2012; Hirshfeld-Becker et al., 2007; Muris,

van Brakel, Arntz, & Schouten, 2011), a motivating factor underlying the development of

the Turtle Program . Perhaps as a means of coping with their dysregulated emotional

responses to novelty and uncertainty, behaviorally inhibited children are more likely to

withdraw from peers in social contexts, beginning at relatively young ages (Rubin,

Coplan, & Bowker, 2009). Thus, the targeted sample in Study 2 were more likely than

typical children to exhibit evidence of autonomic dysregulation and engage in solitary

and withdrawn behaviors around peers.

 As briefly described in the Study 1 overview, one aspect of participating in the

intervention study was the completion of a series of laboratory assessments. During these

assessments child and parent physiology was recorded while engaging in a prescribed set

of tasks, some of which were intended to be particularly distressing to a population of

children elevated in BI. Leveraging this aspect of the study design to evaluate IBI VizEdit,

Study 2 sought to address whether separate, trained editors could produce similar RSA

values during each task, whether RSA would vary as expected with the different tasks

during the laboratory assessment, and finally whether variation in physiology during the

lab assessment was related to the enactment of socially appropriate behaviors in a real-

world peer context.

Participants

60

 Pre-intervention physiological data were successfully collected from a total of 66

out of a potential 75 child participants (Mage = 52.65 months, SD = 6.17). Two of the 9

missing cases were unavailable due to technician/experimenter error in the execution of

the study protocols. One child refused to wear the device and continually removed it

throughout the assessment. For the remaining 6 cases, their absence in the final data set

was due to particularly poor signal quality. Editors simply did not have enough good

heart rate signal to work from. In addition to these cases for which there were no

available physiological data at the pre-intervention assessment, there was one instance in

which only partial data were available due to hardware failure (the first video, the clown,

and the second video could be identified in the time series, nothing else).

 Children in the obtained sample were somewhat racially diverse (59.46% White,

17.57% Asian/Asian-America, 6.76% Black/African-American, and 16.22% Other or

mixed-race), and majority female (56.76% girls vs. 43.24% boys). To enroll in the study,

children were required to be elevated in parent-reported BI, and not surprisingly BIQ

scores, as reported by parents at baseline, were high (M = 154.50, with possible scores

ranging from 30 to 210).

Procedures

All instrumentation and physiological data collection protocols were the same for

Study 2 as described for Study 1. However, the heart rate data used for Study 2 were

collected at the initial laboratory assessment (i.e., prior to the start of the intervention). To

the degree possible, all segments (Video, Clown, Kids, and Introduction) were edited for

every Turtle pre-assessment child heart rate file. In Study 1, condition or task being

performed during the assessment was irrelevant as the focus was primarily on testing the

61

functioning of the imputation program. For Study 2, the child’s physiological response to

each condition was a primary variable of interest (see Figure 3.10).

Measuring Physiological Response to Different Social Experiences. Once the

sensors were tested and attached to the participant, the session started with an age-

appropriate video, referred to as the Video condition (see Figure 3.10). During the

assessment, children were asked to watch the same video three times, before and after

certain socially challenging conditions. The Video condition was primarily intended to

help establish a within-session measure of tonic, baseline physiological activity.

The Clown condition began as soon as the first Video condition finished. The

Clown condition was designed to provide an in vivo social challenge for the child,

specifically the social challenge of being asked to speak to an unfamiliar individual. A

research assistant dressed as a clown knocked on the outer door of the laboratory to

initiate the condition. The experimenter asked the visitor to come in, at which point the

research assistant entered and waited 10 seconds while staring at the child with neutral

affect. After the 10 seconds lapsed, she introduced herself as “Binky, the clown” (Binky

was always performed by a female research assistant). She then asked the child, “What’s

your name?” If the child responded, the research assistant thanked the child and turned to

the parent to inquire about his or her name. If the child did not respond within 5 seconds,

the research assistant repeated, “My name is Binky. What is your name?” If the child still

did not respond, the research assistant addressed the parent and said, “You must be his [or

her] parent. What is your name?” After the parent responded, the research assistant asked,

“Can you ask your daughter [or son] if she is willing to tell me her name?” The research

assistant patiently waited as the parent prompted the child to introduce him- or herself to

62

Binky. After a maximum of 60 seconds had passed, Binky left the room, and the child’s

attention was returned to the computer screen where the Video condition repeated a

second time.

Once the second run of the video finished, the experimenter explained to the child

that she wanted to introduce several children who were not in the lab that day, but who

the child might meet when he or she came back during future visits to the lab. The

purpose of the Kids condition was to determine whether variation in physiology while

learning about unfamiliar peers is related to treatment response. During the Kids

condition, images of smiling children’s faces and a simple clip art object were displayed

at 10-second intervals. Smiling images for the fictitious children were taken from the

Child Affective Facial Expression set (LoBue & Thrasher, 2014). For the first 5 seconds,

only the image of a fictitious child appeared on the screen. For the next 5 seconds, the

image of the child was accompanied by clip art indicating an object, activity, or place the

fictitious child enjoys. When presenting each slide, the experimenter said the fictitious

child’s name (e.g., “This is Billy.”). Then, after the first 5 seconds and in sync with the

appearance of the clip art image, the experimenter followed by describing what the child

liked (e.g., “Billy likes baseball.”). After six such presentations of novel children the Kids

condition ended.

To start the next condition, a self-introduction task, the experimenter began by

directing the child’s attention to a camera mounted on a nearby wall. The experimenter

asked the child to record a, “brief introduction so the kids you just learned about can

learn something about you.” These instructions were designed to mimic aspects of the

Trier Social Stress Test, which involves public speaking in front of an audience

63

(Kirschbaum, Pirke, & Hellhammer, 1993). The Trier Social Stress Test, is a well-

established task known to elicit changes in autonomic signaling, particularly along the

hypothalamic-pituitary-adrenal axis, which is a sympathetic signaling circuit (Kudielka,

Hellhammer, & Kirschbaum, 2010). Following the experimenter’s instructions, children

were given 90 seconds to record a greeting. Notably, the camera they were asked to speak

into was mounted next to a mirror to reinforce self-conscious emotional states. If the

child remained silent (which was common), the experimenter offered different prompts

such as, “You can tell them how old you are” or “You can describe something you like to

do.” Once the 90 seconds were complete, the baseline Video played for the third and final

time.

Heart Rate Editing Training. A total of three different editors participated in

varying degrees in the present set of studies. To certify their ability to effectively and

accurately edit heart rate data, all editors were trained according to protocols and

procedures outlined by the Brain-Body Center at the University of Illinois – Chicago,

publishers and maintainers of Cardio Edit and Cardio Batch software. The former is a

graphic user interface for editing interbeat interval files; the latter employs Porges’

method for calculating RSA from interbeat interval files. To become certified as reliable

editors using these programs, trainees completed an initial hour-long workshop in which

they learned about the underlying neurophysiology that influences heart rate as well as

the mechanics of using the aforementioned programs to obtain accurate measures of

cardiac activity. After this initial workshop, the trainees worked independently on a set of

20 files provided by the Brain-Body Center for training purposes. While working on this

initial set, trainees could seek advice and ask questions about files that they found

64

challenging from supervisors and peers. The accompanying training manual also

contained notes from a master editor about strategies for the more difficult sections of

these files. To demonstrate mastery and move on to the reliability files, trainees were

required obtain RSA values within +/- .05 of the values published in the software manual

for each training file.

Once a trainee successfully completed all 20 training files, they moved on to a set

of 20 reliability files. The scores for these reliability files are kept by the Brain-Body

Center, and trainees were required to work independently on these files. Seeking advice

from supervisors and peers in the laboratory regarding these files was prohibited. Scores

were emailed to the Brain-Body Center where staff evaluated whether the trainee was

within the +/- .05 threshold for their obtained RSA values on the reliability set. If scores

fell outside the target window, trainees were advised to re-edit those cases. One of the

three editors needed to re-complete one of the files to establish reliability, one editor

needed to re-complete two of the reliability cases, and one editor needed to re-complete

four of the reliability cases. All achieved reliability upon the second submission of their

scores.

After editors completed their Cardio Edit training, they moved on to establish

their reliability with IBI VizEdit. Employing a similar standard of accuracy for RSA

values (i.e., +/- .05), editors needed to complete 4 adult cases and 4 child cases drawn

from the present study. These cases were initially edited by a master editor (MGB) and

his scores were used as references for the purposes of establishing reliability. Importantly,

the 8 cases used to certify editors to use IBI VizEdit were not part of the data included in

Study 2. This training approach is comparable to the standards used to become a certified

65

editor using Cardio Edit, requiring the editing of 24 different segments of heart rate data

for adult and child populations separately (there are a total of 6 tasks per file and editors

had to complete 4 files per population). Editors trained until they obtained RSA values

within threshold for each section of the file. Only after completing this step were they

able to begin work editing files for the present study.

Measures

Respiratory Sinus Arrhythmia. Cardio Batch Plus, a custom program

developed by the Brain-Body Center (2007) was used to calculate RSA values. The

program relies on a series of procedures developed by Porges (1985) to extract measures

of variability within the typical respiration rate of children (.24 Hz to 1.04 Hz). The

approach performs well when signal to noise ratio is low, a reason to ensure accurate

editing of interbeat interval files. To calculate RSA scores, the Porges procedure uses a

moving polynomial filter to remove sources of variation in heart rate that result from

processes slower than typical breathing rates (Porges, 1985). Next, Cardio Batch

calculates a series of RSA estimates sequentially within user-defined epochs to reduce the

effects of aberrant changes in RSA and to minimize violations of stationarity that can

cause problems for frequency-based calculations of time-series data (Shumway & Stoffer,

2017). Epoch lengths were set to 15 seconds for the creation of the present set of RSA

scores. The default setting for the program is 30 seconds, which, in the case of the current

data, would not allow for the calculation of RSA values during the Clown condition for

many participants, as the task could take as little as 30 seconds of time depending on the

child’s responses. Cardio Batch relies on averaging these user-defined epochs to create a

final score, and therefore requires a minimum of two such epochs within a given file to

66

return a value. Once these processing steps and calculations have completed, the final

phase of the procedure is to perform a logarithmic transformation of the obtained values

to coerce final scores into a normal distribution.

Figure 3.12 Respiratory sinus arrhythmia distributions by task

Note. RSA = respiratory sinus arrhythmia.

Calculating RSA scores using the Porges method requires continuous interbeat

interval data, and cannot, therefore be performed when uneditable sections of data exists

within a task. Thus, when cases included uneditable data within a task (i.e., the signal was

67

too weak or too contaminated with artifacts to effectively edit) RSA values were not

calculated for that specific task. Study 2 descriptive statistics for RSA scores derived

from IBI VizEdit are displayed in Table 3.1 and raw distributions of scores, by task

presented in Figure 3.12.

Figure 3.13 Heart period distribution by task

Note. HP = heart period.

Heart Period. The calculation of heart period is a relatively straightforward

process that involves averaging the interbeat intervals in a segment of the heart rate file.

68

Higher values indicate a slower overall heart rate. When a portion of a task was identified

as uneditable, that segment of the task was removed from the calculation and an average

score was calculated from the remaining data, provided that it represented at least 60% of

the task. This is an admittedly arbitrary value for a threshold, and it relies on the logic

that more than half of the data from a given task was deemed usable. Descriptive

statistics for heart period by task are displayed in Table 3.1, with graphic depictions of

the resulting distributions presented in Figure 3.13.

Table 3.1

Root Mean Square of Successive Differences. As with heart period, the root

mean square of successive differences (RMSSD) was calculated for each portion of the

laboratory assessment in Study 2, provided that at least 60% of the data from a task was

deemed to be usable. RMSSD is a measure of variability that assesses the amount of

variation in a set of values that is due to the size of successive differences between points.

Larger beat-to-beat jumps in heart rate will drive up RMSSD values, and RMSSD scores

tend to correlate positively with RSA scores, though the former is a less “pure” measure

of parasympathetic nervous system influence on cardiac activity than the latter (Lewis et

al., 2012; Shaffer & Ginsberg, 2017). Descriptive statistics for RMSSD scores separated

69

by task for Study 2 are displayed in Table 3.1, with their distributions depicted

graphically in Figure 3.14.

Figure 3.14 RMSSD distributions by task

Note. RMSSD = root mean square of successive differences.

Behavioral Inhibition. The intervention from which these data were drawn was

focused on reducing social and emotional risk associated with elevated levels of BI and

anxiety in young children. Parents were asked to report on their children’s levels of BI, a

temperamental trait characterized by fear and wariness in the presence of novel objects,

70

situations, and individuals. BI scores were measured using the BI Questionnaire (BIQ;

Bishop et al., 2003), which assessed parents’ perceptions of their child’s inhibition in

social contexts and when facing novel situations. Parents rated how often a series of 30

statements apply to their child (e.g., Approaches new situations or activities very

hesitantly; Is reluctant to approach a group of unfamiliar children to ask to join in) using

a 7-point scale anchored by Hardly Ever and Almost Always. Average BIQ scores were

used as an auxiliary variable when imputing missing values for Study 2 as variation in BI

has long been tied to differences in underlying autonomic functioning (Calkins, Fox, &

Marshall, 1996; Hastings, Sullivan, et al., 2008; Kagan et al., 1987; Schmidt, Fox,

Schulkin, & Gold, 1999). Internal consistency scores for the parent-report version of the

BIQ have ranged from adequate to good when used with preschool-aged children in the

past (i.e., α’s = .72 to .97; Bishop et al., 2003). Cronbach’s alpha for the total scale score

in the present study was .87.

Play Observation Scale. The Play Observation Scale (POS; Rubin, 2008) was

created to assess young children’s play behaviors during periods of free play in the

presence of similarly aged peers. POS coders were trained to distinguish between

onlooking/reticent behavior, solitary functional-dramatic play, solitary constructive-

exploratory play, parallel play, group/social play, and teacher/adult interactions. These

play categories are mutually exclusive within the coding scheme, which breaks the

observation window into 10-second epochs. For each 10-second period, a trained coder

identifies the dominant play behavior for that segment of time. Onlooking/reticent

behavior occurs when children remain unoccupied, often locate themselves at the

periphery of the social group and display a tendency to watch others play rather than join

71

in. Solitary functional-dramatic play involves pretense, but absent a social partner who

shares in the invented reality. Playing with figures and dolls alone, away from other

children is one example of such play. This category also includes repetitive, non-

exploratory behaviors that appear to have little purpose beyond engaging in the behavior

itself. For example, a child who repeatedly strikes one object with another without a clear

objective beyond causing the two items to strike one another is coded as functional-

dramatic (emphasis on the functional-sensorimotor component in this case). Solitary

constructive behavior encompasses exploratory behaviors that appear to be aimed at

understanding how to use an object as well as the creation of more complex items from

less complex ones (e.g., building with blocks). Parallel play occurs when two children are

engaged in similar play activities near one another and those play behaviors are not

interdependent in any way. Often the children are aware of each other, and may even

adopt similar play activities over time, but there is no contingency to their actions. Group

play, in contrast, does involve interaction and requires that two or more children are

engaged in play activities that involve shared expectations/goals. Interactive games,

shared pretend play, and conversations all fall into this category. The teacher/adult

category is a straightforward code, and it occurs any time the child is interacting with one

of the adults in the room (as opposed to peers) for the plurality of time in a ten-second

epoch. Focusing solely on peer-related behaviors, this latter category was not utilized in

the present study.

Training for the POS involved several stages. First, trainees attended an hour-long

training. After the initial training, trainees had to achieve a kappa of .80 on a total of 8 of

pre-recorded videos with a set of master codes. The videos were 10-minute periods of

72

free play involving between 4 and 7 children at a time, one of which was the target child.

Once they had established reliability using pre-recorded periods of free play, trainees then

completed a live observation, in which they were required to obtain a kappa of .80 with

another coder. Having completed all steps in this training protocol coders were then

allowed to complete school observations for the present study.

Figure 3.15 Distributions of proportion of 10-second epochs children engaged in each

coded play behavior

73

In terms of data collection, the goal was to observe children for 60 minutes prior

to the start of the treatment period. Typically, coders would obtain 30 minutes of

observational data, per visit, during periods of free play in children’s preschools,

necessitating at least 2 observations during this baseline period. Due to classroom

schedules, and variations in the amount of free play that took place on any one day,

observations may have occurred over three or more days. These practical limitations also

occasionally resulted in the inability to obtain a full 60 minutes of data for a given child,

in which case the goal was always to obtain as much observational data as possible.

Within the subsample of children who were assigned to the Turtle Program, who had

usable physiological data, and whose schools allowed study personnel onsite for

observations (n = 52 out of the 75 children randomly assigned to the treatment, see

Figure 3.15), total classroom observation time lasted an average of 55.65 minutes (SD =

10.36, minimum = 17.33).

Hypotheses and Proposed Analyses

Hypothesis 1. Editors were expected to be able to reliably use IBI VizEdit to edit

individual heart rate data as evidenced by intra-editor comparisons between RSA values

derived from IBI VizEdit and a similar, established editing program. Correspondence was

evaluated using the Brain-Body Center’s training standard of obtaining RSA values

within +/- .05 of each other. Additionally, simple correlations were used to test relative

correspondence between scores for each editor.

Hypothesis 2. Editors were expected to be able to reliably use IBI VizEdit to edit

individual heart rate data as evidenced by inter-editor reliability. Independent editors

separately edited the same files using IBI VizEdit and correspondence between RSA

74

scores for each co-edited task was assessed using the Brain-Body Center’s standard of

+/- .05 in addition to bivariate correlations.

Hypothesis 3. Editors using IBI VizEdit were expected to arrive at valid estimates

of heart rate and heat rate variability as evidenced by changes in relevant scores (i.e.,

RSA, RMSSD, and heart period) in response to socially stressful tasks experienced

during laboratory assessment.

Hypothesis 4. Editors using IBI VizEdit were expected to arrive at valid estimates

of heart rate and heart rate variability as evidenced by the capability of RSA and heart

period scores derived from the laboratory tasks to predict children’s social behaviors

during periods of free play.

75

CHAPTER 4

Study 1 Results

A total of 40 segments of data were randomly targeted for deletion and imputation

for each Gaussian process model. Thus, a combined 40 randomly targeted segments x 18

conditions x 3 different imputation models resulted in a total of 2,160 separate model

runs. Summary statistics for each of the three Gaussian process imputation models are

presented in Tables 4.1 through 4.64. Each table includes summary information regarding

model convergence, model run time, model-imputed RMSSD deviation from original

RMSSD values and more, separately by model (i.e., imputation model 1, model 2, or

model 3) and the down-sampling rate of the original signal (i.e., either 125 Hz or 250

Hz). Below, several key elements of these summaries are briefly described and in several

instances accompanying graphics have been created to highlight certain aspects of each

model’s performance in recovering original RMSSD values.

Model Convergence. In the present modeling framework, there was one posterior

distribution that was estimated for all three imputation models – heart rate frequency.

Using the potential scale reduction factor score (i.e., �̂�) as a means of assessing

convergence of the two MCMC chains on the same posterior distribution in each model

run, the results (depicted in Figure 4.1) clearly indicate that the two more complex

imputation models regularly failed to achieve �̂� values at or below the commonly

referenced standard of 1.1, and instead frequently generated MCMC chains that exhibited

relatively large divergence in their final posterior distributions. Relatedly, all three

models, at least on certain runs, converged on mean heart rate values that were

4 Code governing model aggregation is available in Appendix D

76

implausibly high, with some maximum mean estimates exceeding 150 BPM, a value

typically associated with aerobic activity (see Tables 4.1-4.6).

Figure 4.1 Convergence of Gaussian process models under varying conditions as

measured by scale reduction factor of the model-estimated heart rate parameter

77

Table 4.1

78

Table 4.2

79

Table 4.3

80

Table 4.4

81

Table 4.5

82

Table 4.6

83

Across all conditions, the second Gaussian process imputation model, which

included a function to model heart rate as well as heart rate variability as a function of

respiration, resulted in �̂� values of 1.1 or greater in 46.67% of the runs. The third

Gaussian process model, which added a function to model heart rate variability related to

background metabolic processes, performed slightly worse in terms of convergence,

producing �̂� values ≥ 1.1 in 56.94% of the model runs. By comparison, only 15.42% of

the first Gaussian process model runs resulted in heart rate parameter �̂� values that

exceeded 1.1. This first model was the simplest of the three and included a singular heart

rate parameter that decayed in its effect over time. Additional detail regarding

convergence of models on a posterior distribution for heart rate is displayed in Tables 4.1

– 4.6.

Model Run Time. In line with expectations, as model complexity increased, and

as the total amount of data increased, corresponding and exponential increases in model

run time were observed. As displayed in Figure 4.2, there were some instances in which

model run time (in minutes) exceeded what any researcher may deem practically

reasonable, particularly for the two more complex Gaussian process models. The longest

model run took 2512.80 minutes, or 41.88 hours (not depicted in Figure 4.2), an

exceedingly long time to impute a section of data representing only 6.07 seconds of total

assessment time.

The exponential increase in model run time as a function of increased data

incorporated in the imputation model can be seen in Figure 4.3. As the sampling rate for

the imputation model (either 4 Hz, 8 Hz, or 12 Hz) increases, a non-linear increase in

model

84

Figure 4.2 Model run time for each Gaussian process model under varying conditions

85

run time can be detected. A more obvious display of this phenomenon can be observed by

plotting model run time as a function of the total amount of time being imputed. Across

all models, the amount of data entering the model is driven by a combination of the total

amount of time targeted for imputation, the data sampling rate (either 125 Hz or 250 Hz),

the length of the window used for imputation, and the model sampling rate. As expected

factors driving up the amount of data used to tune the model parameters and the amount

of data output in the form of predicted values was related to exponentially increasing

model run times. This pattern is most obvious in the two more complex imputation

models (see Figure 4.3).

Visualizing Bias and Precision. From a visual standpoint, the bias and precision of

estimated RMSSD values can be evaluated by the relative location of the deviation score

boxplots for each model tested under varying conditions including the size of the data

window used for imputation (1x, 2x, or 3x the size of the target window), the sampling

rate (4 Hz, 8 Hz, or 12 Hz), and the data sampling rate (125 Hz or 250 Hz) (see Figure

4.4). Results of the two naïve imputation runs are presented in each window of Figure

4.4 for comparison purposes. The values depicted in the plots are based on RMSSD

values calculated from a section of data that included the portion targeted for imputation

as well as 15 seconds of the surrounding data (split evenly before and after the imputation

window). To calculate these scores using the imputed data, the peak detection algorithm

used to extract IBIs was applied to a file in which imputed values replaced the original

values. Mean and hotdeck replacement scores were calculated in a similar fashion,

replacing the original interbeat intervals in the targeted section with the mean interbeat

interval or a random value selected, with replacement, from the vector of interbeat

86

intervals. RMSSD values were then calculated from these new, updated vectors of

interbeat interval values.

Figure 4.3 Model run time as a function of total time to be imputed

87

Figure 4.4 Distributions of imputation-derived RMSSD deviations from original values

As expected, the hotdeck replacement approach yielded estimates of RMSSD that

were biased upwards (median bias = 0.0085) whereas a mean replacement strategy

88

resulted in estimates of RMSSD that were downwardly biased (median bias = -0.0023).

Gaussian process models tended to exhibit positive bias and were relatively more spread

out (i.e., less precise) than the two naïve strategies. There were some notable exceptions

to these trends. For instance, when using the first Gaussian process model, which

included a term for heart rate but no attempts to model variability in heart rate as a

function of other physiological processes (e.g., breathing), imputing values based on

model data sampled at 8 Hz from a window of time equal to the imputed section (i.e., 1x)

yielded relatively accurate series of interbeat intervals overall with a median bias of

0.0002 and 0.00012 when the data were down-sampled to 125 Hz and 250 Hz

respectively. It was also the case that under these conditions the precision of the imputed

values increased slightly when the down-sampling rate went from 125 Hz (τIQR = 38.37)

to 250 Hz (τIQR = 45.50)5. For comparison purposes the precision of the hotdeck

replacement strategy was τIQR = 69.00 and the precision of the mean replacement strategy

was τIQR = 217.46. Combined, these results suggest that at a down-sampled rate of 125

Hz and 250 Hz, the first Gaussian process model provided relatively less biased results

than the two naïve imputation strategies, but the imputed values and resulting estimates

of RMSSD derived from the imputed and surrounding data were less precise (i.e., more

spread out).

5 Note that the interquartile range (IQR) is being used as the basis of precision in this case. Precision is

often defined as the inverse of variance. In this case there are two reasons for using the IQR, or more

accurately its inverse, as a precision metric. The first is that RMSSD is a variance statistic and is therefore

lower-bounded by 0. Beyond a certain point, it is impossible for the model to result in a more negative

deviation from the expected value. Conversely, the positively biased values have no upper limit. Secondly,

the degree of mis-estimation of RMSSD in a positive direction, past an as yet undetermined value becomes

qualitatively irrelevant. An imputed RMSSD value that misses the target mark by .15 is likely as useless

from a practical standpoint as one that misses the mark by .25 or .75. Thus, a precision measure that relies

on variance would provide a potentially misleading view of the degree of a given model’s practical

precision, even if it were providing a more accurate picture of its technical precision.

89

 The first Gaussian process model also appeared to perform reasonably well when

relying on data that were twice as long as the original section targeted for imputation,

were sampled at 12 Hz for inclusion in the model, and when the overall signal was down-

sampled to 250 Hz. The median bias under these conditions was positive (0.00209), but

lower than the bias evident when using a hot deck replacement strategy and (slightly)

smaller in absolute terms than the negative bias exhibited by a mean replacement

strategy.

 Based on the visual depiction of model results, the remaining conditions and

models left much to be desired in terms of general model accuracy and precision.

Opposite expectations, many of the conditions thought to possibly improve imputation

performance did not result in appreciably better results than the statistically flawed, but

easily implemented hotdeck and mean replacement strategies. Estimates of RMSSD

derived from the predictions of the second and third Gaussian process models tended to

consistently exhibit similar or greater levels of median bias and less precision as

evidenced by the boxplots in Figure 4.4 and the data summarized Tables 4.1-4.6.

 Selecting only those models for which there was evidence of convergence on the

heart rate posterior (i.e., �̂� < 1.1) and the first Gaussian process model still tended to

provide the best prediction of the original RMSSD values (see Figure 4.5). Median bias

did improve for the two more complex models when selecting models based on

convergence, as did the precision of many of the RMSSD estimates. However, the

smallest distribution

90

Figure 4.5 Distributions of imputation-derived RMSSD deviations from original values

from models with adequate convergence

91

of RMSSD deviations centered at or about 0 were still those based on imputations from

the first, simplest Gaussian process model. These results suggest that taking model

convergence on the heart rate parameter into account is important. Moreover the findings

indicate that model simplicity may be more predictive of successful imputation than the

amount of data or the inclusion of more complex terms to explain different sources of

heart rate variability.

Study 2 Results

Editing Summary. One useful feature of IBI VizEdit is that the program outputs

simple summaries of the number and proportion of data points in the final files that

represent manually adjusted and edited values. These outputs can identify sections of data

that typically require editing in a study, allowing for transparent reporting. As displayed

in Figure 4.6, the Clown and Introduction tasks were the most heavily edited as

measured by the proportion of final data points that represented edited interbeat interval

values (i.e., not in the original vector returned by the peak detection algorithm). This

result is not surprising as these tasks were the most distressing for the children to

participate in and tended to generate the most movement, even while seated in their

chairs.

Intra-Editor Reliability. As a first test of the ability of IBI VizEdit to yield

reliable results, the two primary editors who worked on Study 2 re-edited a subset of

tasks from the files they were assigned. These tasks were randomly selected from all the

cases edited by each of the two editors, provided that no part of the task was deemed

uneditable. Editor 1 re-edited a total of 37 tasks from their assigned files and Editor 2 re-

edited a total of 38 tasks from their files. To assess performance across programs,

92

differences scores were created by subtracting the Cardio Edit RSA values from the IBI

VizEdit RSA values. On average, RSA score deviations between the two programs were

0.03 (SD =

Figure 4.6 Distributions of the proportion of edits required by task

0.11) for Editor 1 and 0.01 (SD = 0.08) for Editor 2. As seen in Figure 4.7, when Editor 1

used IBI VizEdit to process heart rate files, their obtained RSA values tended to be

slightly higher than when using Cardio Edit, though the average difference score was not

93

significantly greater than 0, t(36) = 1.39, p = .174. An alternative to examining average

differences scores across programs is to determine the number of times the difference in

RSA scores fell outside a +/ .05 range, the threshold used by the Brain-Body Center for

establishing reliability using Cardio Edit. Applying this threshold 18 tasks (48.65%) fell

outside the target window for Editor 1 and 11 tasks (28.95%) fell outside the window for

Editor 2. A slightly more relaxed threshold of +/- .10 revealed a somewhat more

encouraging pattern from a cross-program consistency standpoint. A total of 11 tasks

(29.73%) for Editor 1 and 5 (13.16%) for Editor 2 fell outside this slightly expanded

range (see Figure 4.7). Finally, scores derived from both programs, despite the slight

difference in absolute values, were highly correlated, r(75) = .99, p < .001. Combined,

these results suggest that trained editors can use IBI VizEdit to obtain scores for RSA that

are highly similar in a relative, not absolute, sense to those obtained when using Cardio

Edit.

Figure 4.7 RSA difference scores for primary editors: Comparing editors' RSA values

from IBI VizEdit and Cardio Edit

94

Inter-Editor Reliability. As a second check on the program outputs, a third

editor re-edited a total of 17 complete heart rate files randomly taken from Study 2

participants using IBI VizEdit. These cases were drawn from files edited initially by both

primary editors, if there were no uneditable segments identified within a given case. The

third editor edited every task within a given file and calculated RSA scores using Cardio

Batch. Examining difference scores revealed that, on average, the third editor was within

+/- .05 of the RSA values derived from Editor 1 100% of the time (60 out of the 60 co-

edited tasks). Except for one large deviation (omitted from Figure 4.8) in which the RSA

values for Editor 3 and Editor 2 (the other primary editor) were separated by .49, Editor 3

and Editor 2 produced RSA scores within the +/- .05 threshold most of the time (41 out

of the 42 tasks that were co-edited). Not surprisingly, given the degree to which inter-

editor scores were largely in agreement on an absolute basis, Editor 1’s and Editor 3’s

scores for the same tasks were correlated at r(58) = .9997, p < .001, and Editor 2’s and

Editor 3’s scores were correlated at r(40) = .9965, p < .001. Overall, these data suggest

that different editors who completed the same IBI VizEdit training protocol were able to

use the program to generate highly similar results, not only in a relative sense, as

evidenced by correlations approaching 1, but also in an absolute sense with nearly all

differences in RSA scores between editors falling between +/- .05.

95

Figure 4.8 RSA difference scores for primary editors: Comparing RSA values from a third

editor using IBI VizEdit

Task Analyses. A series of Bayesian multilevel models were created to determine

whether estimates of heart rate variability (RSA and RMSSD) and heart period during a

baseline laboratory assessment varied as expected. As a brief reminder, during periods of

engaged attention and relaxation heart rate variability and heart period are expected to be

higher relative to moments characterized by threat or distress. In the laboratory

assessment, the Video and Kids tasks were expected to lead to engaged and attentive

states. Interacting with the research assistant dressed as a clown and being asked to

record a video introduction were both expected to be distressing, leading to a reduction in

heart rate variability and heart period as parasympathetic influence was withdrawn from

affecting cardiac pacing. Data were missing in the present set of physiological variables

when the signal was of such low quality that at least 40% of a task or more was deemed

uneditable. Additionally, in the case of RSA, if the task was too brief to create at least

two 15-second epochs to average together or if any portion of the task was uneditable,

96

RSA values were not calculated. As summarized in Figure 4.9, these constraints resulted

in 49.3% of the cases analyzed having completely usable data through all six tasks for the

purposes of calculating RSA, with 13.3% containing insufficient data for all tasks.

Several other missing data patterns emerged and are summarized in Figure 4.9. As might

be expected, the short duration of the Clown task resulted in the largest proportion of

cases with insufficient data to estimate RSA values, even when epoch lengths were set to

15 seconds.

Because IBI VizEdit is able to ignore uneditable segments of data when creating

summary scores for RMSSD and heart period, these variables were more complete in the

present data set. So long as at least 60% of a task was deemed editable IBI VizEdit

returned estimated values for these two measures of cardiac activity. The missingness

patterns for these variables are displayed in Figure 4.10. Overall, a full two-thirds

(66.7%) of participants included in Study 2 had sufficient data to obtain RMSSD and

heart period scores across all six laboratory tasks, with 12.0% of the sample having

insufficient editable data for all tasks. Again, several other missing data patterns emerged

and are presented in Figure 4.10.

Figure 4.9 Vizualization of missing data for RSA values

97

Figure 4.10 Vizualization of missing data for IBI VizEdit-Generated values

 Multiple imputation was used to address statistical issues arising from missing

data in the present set of variables. Gender, age (in months), task, and baseline BI scores

were included in the imputation model as auxiliary, completely observed variables. Use

of the `mitml` package provided a straightforward means of incorporating the

hierarchical structure of the data in the imputation model, while allowing completely

observed auxiliary variables to serve as predictors of the missing values (Grund,

Robitzsch, & Luedtke, 2018). Based on recommendations made by (Graham, Olchowski,

& Gilreath, 2007), a total of 20 data sets with imputed values were created and included

in the multilevel analyses. Following suggestions for the setting of priors in Stan (Stan

Development Team, 2017), model parameters were provided weakly informative priors

to ensure posterior estimates remained within the range of plausible values (as opposed to

setting flat or uninformative priors as has been common practice among some Bayesian

analysts in the past). Posterior parameter distributions derived from each of the twenty

imputed data sets were integrated using the `brm_multiple()` function available in the

`brms` package (Bürkner, 2017).

98

Respiratory Sinus Arrhythmia. Using 95% credibility intervals to test the

hypothesis that differences in RSA between tasks was unlikely to be zero, the model

revealed that children’s RSA was lower during the Clown and Introduction tasks

compared with all other tasks. These differences remained after controlling for child

gender and age as well as the proportion of edits required in each task (see Table 4.7).

There were no differences in RSA scores across the other four tasks (i.e., the repeated

viewing of the Video or the Kids social learning task), suggesting that children’s RSA

scores were similar across these four conditions.

Table 4.7

RMSSD. As was the case with RSA, 95% credibility intervals were used to

evaluate the hypothesis that RMSSD values differed as a function of each task during the

assessment. Opposite expectations and counter to the results examining RSA variation,

there were no differences in heartbeat RMSSD scores across the various conditions

during the laboratory assessment (see Table 4.8). These null results held when

controlling for child gender, age, and proportion of edits.

99

Table 4.8

Heart Period. Finally, using the same hypothesis testing procedures as described

above, the model revealed that heart period was lower during the Clown and the

Introduction task (i.e., the child’s heart was beating faster) compared with all other

conditions during the assessment. These differences held after controlling for child

gender, age, and the proportion of edits required in each task (see Table 4.9). As with the

RSA models, there were no differences in heart period across the other tasks.

Table 4.9

100

Tonic RSA and Play Behaviors

 RSA scores averaged across the three video conditions were used as a measure of

children’s tonic RSA, which is thought to be related to individuals’ self-regulatory

capacity (Beauchaine, 2015). A Bayesian binomial regression provided the modeling

framework for examining the association between tonic RSA scores and the probability

of engaging in various play behaviors. This modeling approach provided a natural means

of incorporating variation in the total amount of time each child was observed, as cases

with more total observations contributed more weight to the final fixed effects using this

approach. In all models, gender and child age were included as covariates. Missing data

were addressed using a similar imputation strategy as described for the RSA, RMSSD,

and heart period analyses. The main difference was that, for these models, the proportions

of play behaviors were included as an additional set of variables in the imputation model.

As can be seen in Tables 4.10-4.15, tonic RSA was unrelated to the likelihood

children engaged in any of the coded behaviors. All parameter estimates representing the

association between average RSA during the videos and each play behavior resulted in

95% credibility intervals that contained 0.

Table 4.10

101

Table 4.11

It is possible that averaging RSA value across all three video segments of the

laboratory assessment artificially drove down estimates of tonic RSA to some degree.

The second and third displays of the video followed putatively distressing tasks (i.e.,

social interactions with an RA dressed as a clown and recording a video introduction)

which, as is described above, led to lower RSA values. As the parasympathetic inputs to

the heart came back online (i.e., vagal withdrawal was reversed), there would naturally be

a period in which lower RSA values lingered into the video conditions. To rule out the

latency to return to baseline as having an undue effect on estimates of tonic RSA, the

same binomial regression models were run a second time, with average RSA during the

first video as the measure of tonic RSA. As can be seen in Tables 4.10-4.15, the results

remained the same and RSA was not related to the likelihood of engaging in any of the

coded play behaviors.

102

Table 4.12

Table 4.13

103

Table 4.14

Table 4.15

Dynamic RSA and Play Behaviors

 Next, a series of difference scores were created to represent dynamic RSA in

response to the two socially stressful tasks (Clown and Introduction) and the social

learning task (Kids). To create these scores, RSA during each of the three conditions was

subtracted from average RSA across all three videos. Bayesian binomial regressions

again provided the modeling framework to address the hypothesis that dynamic RSA in

response to each condition would be related to variation in play behaviors in vivo.

 The results for dynamic measures of RSA were similar to those using Tonic

measures of RSA to predict play behaviors in the classroom context. RSA reactivity to

104

the laboratory tasks failed to predict children’s play in a real-world context (see Tables

4.10-4.15).

Tonic and Dynamic Heart Period and Play Behaviors

 Mirroring the analyses involving RSA, tonic heart period across all three videos

and changes in heart period relative to average heart period during the videos were used

to predict the proportion of time children spent engaged in various behaviors during

classroom free play. Also mirroring the RSA models, tonic heart period as well as

changes in heart period failed to predict the likelihood of engaging in any one of the play

behaviors recorded by trained coders, see Tables 4.16-4.21.

Table 4.16

105

Table 4.17

Table 4.18

Table 4.19

106

Table 4.20

Table 4.21

107

CHAPTER 5

Study 1: Is there Evidence to Support the Use of Gaussian Process Models?

 The results from the Study 1 indicate that there may be value in applying

Gaussian process models to the task of imputing PPG data when the signal is lost due to

artifacts or other technical issues (e.g., power disruption, hardware malfunction, etc.).

The findings from Study 1 also clearly indicate that whatever potential utility Gaussian

process models may hold in addressing missing values in the case of PPG data that utility

has yet to be fully realized. Figures 5.1-5.3, demonstrate in a rather straightforward

manner, the good, the bad, and the ugly results of imputed values achieved via Gaussian

process models in the present research. While not perfectly aligned with the original

values, Figure 5.1 is an example of a relatively successful imputation run, with the peak

locations of the imputed PPG signal roughly approximating the peak locations of the

original signal. By comparison, Figure 5.2 represents an instance in which the imputation

model was able to produce a series of imputed values with an appropriate quasi-periodic

waveform but obviously out of sync in its timing with the original values. More troubling

though are imputation runs that fail to impose anything close to the structure of the

individual’s PPG waveform on the targeted section of data (see Figure 5.3).

 Taken together, these three exemplars of different Gaussian Process model

imputation runs simultaneously breathe life into the idea that this approach can be

successfully employed and demonstrate that the optimal implementation of the

imputation framework has yet to be achieved. Certainly, a degree of error is going to be

unavoidable in any attempt to impute missing or corrupted data, and results such as those

108

in Figure 5.2 might be acceptable if the majority of times the imputation model yielded

something closer to the predicted values on display in Figure 5.1.

Figure 5.1 Relatively successful imputation (in red) compared with original values (in

black)

Another, potentially related, issue that emerged in sifting through these results is

that some of the models took such a long time to run (> 6 hours) that it is hard to imagine

that Gaussian process imputation models, in their current form, represent a practical

solution to the problems presented by missing or disrupted PPG data. Waiting 6 hours to,

maybe, recover 8 seconds of data is an unacceptable tradeoff from a practical standpoint.

 This may seem a relatively dour appraisal of the results, but it is a realistic one.

Still, these findings offer something of a cornerstone around which to build and refine the

current imputation approach. Clearly, the models work well under certain circumstances,

109

often only taking 5 to 10 minutes to complete a relatively accurate estimation of missing

values. There is even evidence that the simpler parameterization of the Gaussian process

imputation model that does not attempt to incorporate additional sources of heart rate

variability into the model may in fact provide the best path forward.

Figure 5.2 Example of imputed values (in red) that are offset from original values (in

black)

As this line of research progresses, the focus should be placed on better

understanding the properties of the data and the model that maximize the performance of

the combined Gaussian processes in arriving at reasonably accurate estimates of missing

values. Based on the current study the following aspects of the implementation approach

are among the first to warrant scrutiny.

110

Figure 5.3 Example of a failed imputation run (in red) relative to the original signal (in

black)

Keep It Simple. One theme that emerged from the present set of findings is that

when a Gaussian process imputation model outperformed other, naïve, imputation

strategies it was usually the result of the simplest model. As is often the case in science,

greater complexity does not always mean greater accuracy or precision in the long run.

Instead, it is often as likely that increased complexity can muddy the waters, allowing

multiple factors unassociated with the true value of interest to cause undue influence on

resulting predictions. This scientific and folk wisdom axiom, when applied in to the

present research suggests that the first Gaussian process may be the best place to start

when refining the implementation of imputation models in IBI VizEdit. Not only did it

perform well, particularly when the model sampled the data at 8 Hz, it took much less

111

time to run, and converged more frequently on a heart rate frequency posterior see Tables

4.1 and 4.2.

Choosing the Right Estimation Framework. Narrowing the focus of future

research in this vein to the first Gaussian process model is certainly defensible based on

the results, but the findings in the present study are not enough to consider abandoning

the pursuit of the two more complex imputation models entirely. Admittedly, relative to

the first Gaussian process imputation model and even to more naïve imputation strategies

they did not perform well as currently implemented. That is not to say that the present

implementation is the optimal implementation of these models though, as it relies on a

two-step process that first produces penalized maximum likelihood estimates of model

hyperparameters and then, in a Bayesian framework, creates a posterior distribution of

predicted values and a heart rate frequency parameter.

This two-step approach was adopted for computational convenience; however, in

fixing parameters in the model to their maximum likelihood estimates, there is always the

possibility that the values being fixed within the model represented a solution from a

local maximum on the likelihood surface. As an exploratory step in the present study,

maximum likelihood estimates were derived twice, using two different sets of random

starting values. Comparing these values revealed that oftentimes the maximum likelihood

estimates were not replicated (an indication that at least one of the points did not

represent a global maximum), and in some cases the deviations in values could be quite

large relative to the parameter being estimated (See Figures 5.4 and 5.5). Focusing on the

second Gaussian process model (see Figure 5.4), the length hyperparameters,  𝑙3 and 𝑙5,

frequently exhibited wide divergence in the maximum likelihood point estimates returned

112

from two different random starts. In fact, several absolute difference scores exceeded 20

(not depicted in Figure 5.4).

Figure 5.4 Divergence in hyperparameter estimates for Gaussian process model 2 based

on absolute differences in estimates from two sets of random starting values

113

Figure 5.5 Divergence in hyperparameter estimates for Gaussian process model 3 based

on absolute differences in estimates from two sets of random starting values

Mathematically, the length estimates impact the smoothness of the estimated

mean function, which is used to derive the imputed values. Shorter estimates of the length

hyperparameter will result in more rapid changes in the waveform (Gelman et al., 2013).

In the context of modifying the imputation model, a length parameter for 𝑙3 or 𝑙5 that is

114

too small would result in a mean function that includes too many rapid changes in

amplitude (see Figure 5.6). The opposite problem occurs if length parameters are too

long as the wave form begins to “flatten” out (see Figure 5.7). Both would result in

imputed values that do not align with the surrounding signal.

Figure 5.6 Example of Gaussian process model with incorrectly specified length

parameters that are too short

One way to sidestep potential problems that arise from maximum likelihood

estimates that represent a convergence on a local maximum is to iterate multiple times

with random starting values and only take those parameter estimates that have been

replicated. This approach is similar to that used by numerous implementations of

maximum likelihood models widely available in a variety of software packages.

115

 In thinking through the optimal implementation of these models as a means of

imputing missing PPG data, it is worth considering whether an entirely frequentist

approach may be more practically palatable than an entirely Bayesian or a mixed

frequentist-Bayesian approach. Bayesian models can take a considerably long time to

run, due to the time required for the independent chains to converge prior to drawing

values for parameters from their posterior distributions. It is worth testing whether, using

an approach based entirely on maximum likelihood estimates is worth considering,

especially given the reduced computational burden such an approach might provide. At

the very least, the present study indicates that concerns related to the convergence of

model hyperparameters, the length parameters in particular, need to be addressed no

matter the future implementation plans, be they entirely Bayesian, entirely frequentist, or

a mixture of the two.

Figure 5.7 Example of a Gaussian process model with incorrectly specified length

parameters that are too long

116

 Summary. The results of the three imputation models do not provide convincing

support for the use of any one model at this stage to impute missing PPG data. There are

some indications, however, that the simplest of the three imputation models could be a

useful tool to help guide editors in making reasonable choices when confronted with data

that is too corrupted to effectively edit using existing strategies. The results from the

present study suggest that there may be little benefit to increasing model complexity, and

if anything, under the current implementation of the models, doing so tends to bias

estimates of heart rate variability in the imputed section upward. The findings apply only

to the current implementation of the imputation models and adjustments to the imputation

process may yield an entirely different set of conclusions.

It is important to bear in mind that these models were never intended to replace

human decision-making when editing heart rate data (at least not yet). Instead, they were

meant to offer a reasonable guide, a trail of points, that an editor can choose to follow or

not. As such, there is little “risk” to including a modified implementation of the first

Gaussian process model in current versions of IBI VizEdit, provided that the editors

understand that it may return untrustworthy values in some cases. As can be seen in

Figures 5.1, 5.2, 5.3, 5.6 and 5.7, it is visually obvious when the results of an imputation

cannot and should not be trusted to represent the missing data. Clearly, future work

remains in further refining this imputation approach. At this early stage, there is enough

evidence in the present report to at least consider using the first Gaussian process model

on a provisional basis, with user oversight in the form of a trained editor choosing to

accept or reject the proposed timing and location of heart beats. Long-term, there may be

a way for these sorts of models to automatically process and edit sections of data,

117

reducing burden on study personnel. This method is not there yet, but there are enough

successful imputation runs in the present data set to suggest that it some day could be.

Study 2: Can Trained Editors reliably use IBI VizEdit?

 Gaussian process imputation models may represent the future of IBI VizEdit. Its

present is still as a base graphical interface for processing, editing, and outputting usable

heart rate data. For most applications in psychological and behavioral sciences we are

interested in instruments, measures, and tools that provide both reliable (i.e., relatively

free from error) and valid (i.e., measures the construct/phenomenon of interest) scores

(but see Moss, 1994). Study 2 addressed the question of reliability of scores output by IBI

VizEdit in two ways. The first was by evaluating intra-editor consistency in RSA scores

across two different heart rate editing programs that rely on similar editing strategies: IBI

VizEdit and Cardio Edit. The second involved the use of a third editor whose RSA scores

were compared against the two primary editors who worked on the sample’s heart rate

files. RSA scores were the focus of efforts to evaluate reliable use of the program as they

are more susceptible to slight changes in the final interbeat interval time series than other

measures such as heart period.

 Beginning with the intra-editor analyses, depending on the standards applied there

was mixed evidence of IBI VizEdit’s reliable performance vis-à-vis the RSA scores

produced by each editor on a randomly selected set of files. Using the Brain-Body

Center’s training standard of RSA values within +/- .05, difference in RSA scores

between the two programs fell too often outside desired range. For Editor 1 nearly one in

every two tasks that were edited in both programs resulted in RSA values that differed by

more than .05. For Editor 2 it was approximately three out of every ten files.

118

 It is worth asking though if this is the right standard to apply in this case. Scores

generated by both programs were still highly correlated, and the distribution of scores

was highly similar in range and measures of centrality (see Figure 5.8). If not always

perfectly aligned, at least in a distributional sense, scores edited in each program tended

to be located in very similar positions relative to other scores in the same set of cases.

This latter feature may be more relevant for the purposes of making valid inferences than

having these two programs more perfectly align in the absolute values of scores produced

using each platform. It is after all unrealistic to expect a research team to edit a portion of

its cases using one program, a portion using another program, and then combine the

resulting values in a single set of scores to be analyzed. To apply the same strict threshold

of +/- .05 to a cross-program comparison of values, with each program having slightly

different sources of error, is likely too strict a standard. Comparing distributions of scores

and the relative position of individual scores within those distributions (i.e., correlation)

are likely better indicators of the degree to which IBI VizEdit can be used to reliably

measure individuals’ cardiac activity, at least when using a different program as the basis

for the comparison.

 On its face, a more encouraging set of results emerged when inter-editor

reliability was evaluated using IBI VizEdit. For this analysis, a third editor was randomly

assigned a subset of cases that had been previously edited by the two primary editors who

worked on Study 2. Evaluating the editors on their consistency using the Brain-Body

Center’s threshold of .05 makes more sense in this case as all editors were working from

the same platform. In all but one very extreme case, Editor 3 was in complete agreement

with Editors 1 and 2 based on the .05 threshold. Not surprisingly, given the high rate of

119

correspondence in absolute values, correlations between the scores generated by Editor 3

and the two primary editors each exceeded .99. Taken together, these results suggest that

editors who complete the training protocols associated with becoming certified to use IBI

VizEdit are likely to generate highly similar scores working independently.

Figure 5.8 Comparing RSA scores from files edited in Cardio Edit vs. IBI VizEdit

 Overall, the weight of evidence presented in the current report suggests that IBI

VizEdit can be used to reliably edit photoplethysmographic heart rate data. Given that the

main editing strategies in the program were reflective of those available in Cardio Edit, a

120

program that has been successfully used for years to edit heart rate data obtained via ECG

sensors (Glenn et al., 2018; Guy et al., 2014; Kenkel et al., 2014; Lamm et al., 2008;

Lewis et al., 2012), it is not that surprising that editors could be trained to a similar

degree of reliability using IBI VizEdit. Additional questions remain and could be worth

exploring as to whether one of these two programs is more accurate in its final estimates

given the slight divergence in absolute values, but the present design was not positioned

to test such a research question.

Study 2: Can IBI VizEdit be used to produce valid estimates of heart rate and

autonomic regulation of cardiac activity in a laboratory setting?

 The main evidence in the present set of studies that points to the ability to draw

valid inferences when using IBI VizEdit to edit interbeat interval files is that RSA and

heart period from files edited in IBI VizEdit varied as expected with a set of prescribed

laboratory tasks. Three of the tasks involved watching the same age-appropriate Sesame

Street video intended to engage children’s attention while simultaneously engendering a

relaxed state. Two of the tasks were designed to be social stressors, one an unexpected

social interaction with an adult RA dressed as a clown, the other a request to record a

video introduction so peers could watch later. The fourth task, learning about similar-

aged peers, was meant to tap cognitive and emotional states while engaged in basic social

information processing.

 As expected RSA scores and heart period were both lower during the social

stressor tasks and were higher during the videos and during the social learning task.

These results reflect a series of neurophysiological responses in which vagal influence on

cardiac activity is withdrawn during periods of distress (i.e., the Clown and Introduction

121

tasks) and is stabilized or even potentially increased during periods of engaged attention

(Brooker & Buss, 2010; Hastings, Nuselovici, et al., 2008). Being the main source of

short-term variability in heart rate, as signaling along the vagus nerve increases or

decreases so too does heart-rate variability, especially within the respiration cycle as

alterations to cardiac activity as a function of respiration are entirely dependent on the

myelinated vagus nerve.

A natural consequence of the withdrawal of vagal inputs to the heart is a

commensurate decrease in heart period (i.e., increase in heart rate), as the vagus nerve

provides tonic inhibitory input into the heart’s internal pacemaker, the sinoatrial node.

Heart period will also decrease as a function of sympatho-excitatory inputs, though these

were not measured directly in the present study. Absent other direct measures of

autonomic activity, heart period has come to increasingly be used and described as an

indicator of general arousal (Adenauer, Catani, Keil, Aichinger, & Neuner, 2010;

Brosschot & Thayer, 2003; Sloan, 2004). The logic for this more general understanding

of heart rate reactivity is that, with multiple autonomic sources, the decrease in heart

period may reflect the withdrawal of vagal influence, or it could be a combination of

vagal withdrawal and sympathetic excitation. Unable to disentangle the

neurophysiological sourcing of the decrease in heart period, it is at least in line with

expectations that children’s overall levels of arousal increased when presented with the

two different social challenges they experienced in the lab. Whether or not the decrease in

heart period was due to elevated activity along sympathetic signaling pathways, such as

the hypothalamic-pituitary-adrenal axis associated with the body’s stress response,

122

remains a question for future studies that incorporate direct measures of sympathetic

nervous system activity (e.g., galvanic skin response).

Figure 5.9 Within-task correlations of physiological variables derived from edited

interbeat interval files

Note. RSA = respiratory sinus arrhythmia; RMSSD = root mean square of successive differences; and HP =

heart period.

 RMSSD values derived from interbeat intervals measured during each task did

not respond to the different conditions as expected. Though highly correlated in the

present sample with RSA (see Figure 5.9), changes in individuals’ RMSSD values from

task to task did not emerge in the present set of analyses. Despite estimates being in

123

expected directions, changes in RMSSD during the Clown and Introduction tasks

(relative to the other tasks) did not reliably differ from 0, according to 95% credibility

intervals. These null effects may be driven by two factors in the present data, both of

which likely interacted to some degree. First and foremost is the fact that the models

relied on data from a relatively small sample. Second, and more theoretically meaningful,

is the fact that RMSSD is not considered to be as “pure” a measure of parasympathetic

influence on the heart as Porges’ RSA, the latter of which has been shown to be

especially responsive to chemical blockades of vagal signaling (Lewis et al., 2012). Thus,

a noisier measure, in a relatively small sample is less likely to produce posterior

distributions of parameter estimates in line with a priori expectations of task differences.

As more data is included from the complete data frame (Study 2 only incorporated data

from one of the two study conditions), it will of interest to see, as the number of usable

cases approaches 120 subjects, if the null findings related to RMSSD hold.

Study 2: Can estimates of parasympathetic regulation of cardiac activity derived

from files edited in IBI VizEdit be used to predict children’s social behavior in a

real-world context?

 According to the results from the present set of models, measures of

parasympathetic regulation of heart rate in a prescribed series of laboratory tasks were

unrelated to social behaviors in a real-world context. The rationale for including this set

of analyses initially was as a means of testing a form of criterion validity. Previous work

has shown that children who are anxious and withdrawn and tend to struggle socially tend

to also have lower RSA, and depending on the task, condition, and/or context, exhibit

potentially maladaptive regulatory patterns as measured by dynamic changes in RSA

124

(Beauchaine, 2001; Beauchaine, 2015; Fox, Henderson, et al., 2005). Thus, to the degree

that the above statements can be accepted to be true, RSA values, both tonic and

dynamic, were thought, a priori, to likely be related to children’s patterns of social play.

Though the primary play behaviors of interest were children’s tendencies to engage in

reticent/withdrawn behavior and group play behavior during periods of classroom free

play, additional solitary behaviors were examined as well.

Despite these theoretically based expectations, none of the models revealed an

association between RSA, tonic or dynamic, and any of the play behaviors coded as part

of the study. The same was true of heart period and changes in heart period. Of course,

failing to reject a null hypothesis is not evidence that the null hypothesis is true, simply

that the evidence available in the data was not sufficiently strong to indicate otherwise. In

the context of the present study, the failure to find an association between physiology as

measured in a laboratory setting and play behaviors as observed in a real-world context

may have been partly driven by several different factors.

Signal and Noise. Perhaps the most obvious issue with the present set of analyses

is relative lack of statistical power. Due to issues collecting physiological recordings from

some children and the fact that some schools refused to allow study personnel on site,

only 52 participants out of a possible 75 had sufficient data to be included in the models.

Additionally, RSA and heart period were not available for all tasks for all participants as

there were sections of data that were deemed unusable, adding another layer of

missingness and reducing the total information available for models to draw from. If

these were the only factors at play, they would be enough to make it difficult to reject the

null hypothesis under the conditions that a true small or moderate association between

125

laboratory-assessed physiology and play behaviors did exist in the population (i.e., highly

inhibited children).

Adding to issues suppressing signal strength, various sources of noise existed

including variation in the classroom climates in which each child was observed, the

structure of free play during which children were observed, whether the play occurred

inside or outside, and what sorts of play equipment and activities were available in the

classroom. Sadly, there are no direct records of these sorts of fluctuations in classroom

contexts, but they undoubtedly existed.

As hinted at above, if signal-to-noise ratio is a factor in obscuring a true

connection between neurophysiological variables assessed in a lab and play behaviors

observed in the real world, doubling the sample (i.e., adding data from the second group

randomized the Cool Little Kids) in the analyses may lead to alternative conclusions.

There is no guarantee that will take place of course, and there are other considerations,

beyond statistical power that cannot be addressed by simply adding more data to the

models.

 The Problem of Restricted Range. The data in the present pair of studies were

drawn from a selected sample, one that was elevated on a measure of early risk for the

onset of anxiety disorders. Previous work has largely established that anxiety and BI are

tied to dysregulated autonomic functioning, with some moderation effects observed that

are related to parenting and parent-child relationships (Fox, Henderson, et al., 2005;

Henderson, Marshall, Fox, & Rubin, 2004; Marshall & Stevenson-Hinde, 1998). The

children involved in the Study 2, therefore likely represented a restricted range of tonic

and dynamic RSA values relative to the population of preschool children at large. The

126

same is true of their tendency to engage in certain play behaviors. In both cases, the

population sampled in the present study likely does not represent the full range of

variability in terms of physiological responses to challenge or play among familiar peers.

Many of the previous studies linking physiology to social behaviors involved populations

and samples with wider ranges of scores along both dimensions (Boyce et al., 2001;

Miller et al., 2017; Utendale et al., 2014). Thus, one inescapable and largely non-

rectifiable component of the attempts to link laboratory-based physiology with classroom

behaviors in Study 2 is the selected nature of the sample, which was critical for the

intervention aspect of the overarching research. However, the fact that all children in the

current study were at or above the 85th percentile on a measure of BI makes certain basic

research questions, such as the linking of lab measures of physiology to play behaviors,

more challenging from a statistical standpoint.

 Alternative Features to Extract. In Study 2, tonic RSA and heart period, as

measured during the video portions of the laboratory assessment, and dynamic RSA and

heart period in response to the non-video components of the session represented the main

features extracted from the cardiac data. These are not the only potentially relevant

aspects of cardiac activity, however. For instance, Hastings and colleagues along with

others have found the use of quadratic and other non-linear modeling approaches to

represent maladaptation at the extremes of physiological functioning particularly useful

when predicting indicators of social and emotional adaptation and maladaptation (Kleiger

et al., 1987; Kogan et al., 2014, 2013; Miller et al., 2017). Additionally, more nuanced

time-series analyses of the data would offer the opportunity to examine change, for

example, at the moment the socially stressful stimulus is presented to the child (i.e., as

127

soon as the Clown opens the door). Along these lines, the latency to return to a baseline

or latency to reach a minimum or maximum value all may represent more nuanced

measures of autonomic regulation of heart rate in response to stressors and versions of

each of these more precise measures of change (as opposed to a difference in averages)

have been utilized by researchers in the past.

 Misalignment of Tasks with Enacting Play Behaviors. Lurking beneath the

discussion of various statistical and measurement issues that may underlie the null result,

it is entirely possible that the task itself is not particularly well-designed as a means of

capturing tonic physiology or changes in physiology that are relevant in a free play

context. Taking the two social stressors as examples, interacting with an adult dressed as

a clown is several social orders of magnitude away from assembling small structures of

cardboard blocks in a recurring setting with a potential friend or, at the very least, an

acquainted classmate. Speaking into a camera to record an introduction, though likely

raising self-conscious emotional and cognitive states, is not the same as asking a familiar

peer to play. Children who showed one physiological reaction while put in the highly

artificial situation of interacting with a clown or recording an introduction in an

unfamiliar context, may have a completely different physiological, emotional, and

cognitive profile when interacting in a familiar context with a familiar agemate. In fact, it

may even be likely that children who respond in an anxious or inhibited fashion in one

context are not especially likely to do so in another (e.g., Asendorpf, 1990; Rubin,

Hastings, Stewart, Henderson, & Chen, 1997). BI, as it was originally conceptualized,

was defined as fear and wariness in the face of the unfamiliar (Kagan et al., 1987), which

may or may not be particularly predictive of how individual children fare in their

128

everyday surroundings, particularly in the safe and likely welcoming environment that is

their preschool classroom.

Conclusions

 Across these two studies, the reality cast in the sharpest relief is that IBI VizEdit is

a sapling of a program, containing considerable promise. As it stands, it can perform the

basic tasks of editing heart rate data obtained from PPG sensors, conveniently taking raw

data and outputting usable values that can be incorporated in models of the analyst’s

choosing. Editors can be trained to reliability, and, supporting the idea that the values

derived from its output are valid, resulting scores vary as expected with a series of

prescribed laboratory tasks. Branching out beyond existing editing software, the program

provides users with an easily digested output report, replete with information about edited

values, total number of edits, proportion of tasks deemed uneditable, and average heart

rate and heart rate variability scores by task. It was designed to be a one-stop shop of

sorts for editing PPG data, and so far, much of that pledge has been realized while

preparing the data for analyses in the present pair of studies. That is not to say that there

is not room for refinement and growth, both in terms of increased practical functionality

and in continuing to push the envelope related to model-based approaches to dealing with

problematic PPG data. Adjustments to the Gaussian process imputation models and a re-

examination of imputation performance rank high in priority among the natural offshoots

stemming from this dissertation. The development of an R package, modification of the

program to allow a variety of file formats, inclusion of processing steps that aid in

cleaning data obtained during fMRI sessions, each represents a new avenue of growth.

What matters most is that there is now a base from which such growth can be supported.

129

APPENDICES

Appendix A: Programming Components of IBI VizEdit

Appendix A.1 Peak Detection Algorithm in R:

 findpeaks <- function (x, m = 3){
 shape <- diff(sign(diff(x, na.pad = T)))
 pks <- sapply(which(shape < 0), FUN = function(i){
 z <- i - m + 1
 z <- ifelse(z > 0, z, 1)
 w <- i + m + 1
 w <- ifelse(w < length(x), w, length(x))
 if(all(x[c(z : i, (i + 2) : w)] <= x[i + 1])) return(i + 1) else return(numeric(0))
 })
 pks <- unlist(pks)
 pks
 }

Appendix A.2 Extracting Interbeat Intervals

 time.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], x[i]-x[i-1])
 }
 return(Z)
 }

 IBI.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-sum(x[1:i])
 }
 return(Z)
 }

Appendix A.3 Iterative Peak Detection Algorithm

 iter.IBI<-function(x, ds=500, iter.length){
 require(psych)
 #browser()
 x.smooth<-as.numeric(smooth(x))
 x.smooth<-na.omit(x.smooth)
 TIME<-0:(length(x.smooth)-1)
 x.smooth<-x.smooth-predict(lm(x.smooth~TIME))
 s<-round(seq(round(ds*.15), round(ds*3/4), length.out = iter.length))
 s<-unique(s)
 Z<-data.frame(rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)))
 for(i in 1:length(s)){
 IBI<-findpeaks(x.smooth, s[i])
 time<-time.sum(IBI)/ds
 Z[i,1]<-s[i]
 Z[i,2]<-sd(time)
 Z[i,3]<-max(time)-min(time)

130

 Z[i,4]<-rmssd(time)
 Z[i,5]<-mean(acf(time, lag.max = length(time)/20, plot = F)$acf)
 Z[i,6]<-s[i]/ds
 }
 colnames(Z)<-c('BW', 'SD', 'Range', 'RMSSD', 'AC', 'BW(s)')
 Z<-Z[order(c(Z$RMSSD, Z$Range, Z$BW), decreasing = F),]
 print(head(na.omit(Z)))
 IBI.fin<-findpeaks(x.smooth, m=na.omit(Z)[1,1])-1
 IBI.time<-IBI.fin/ds
 IBI.done<-time.sum(IBI.time)
 IBI<-data.frame(IBI=IBI.done, Time=IBI.time)
 return(IBI[c(-1,-length(IBI$IBI)),])
 }

Appendix A.4: Stan Code for 2-Process Gaussian Process Imputation Model

functions{
 //covariance function for main portion of the model
 matrix main_GP(
 int Nx,
 vector x,
 int Ny,
 vector y,
 real alpha1,
 real alpha2,
 real rho1,
 real rho2,
 real rho3,
 real HR_f){
 matrix[Nx, Ny] K1;
 matrix[Nx, Ny] K2;
 matrix[Nx, Ny] Sigma;

 //periodic covariance that does not decay
 for(i in 1:Nx){
 for (j in 1:Ny){
 K1[i, j] = alpha1*exp(-square(x[i]-y[j])/2/square(rho1));
 }
 }

 //specifying first quasi-periodic process that incorporates heart rate
 for(i in 1:Nx){
 for(j in 1:Ny){
 K2[i, j] = alpha2*exp(-2*square(sin(pi()*fabs(x[i]-
y[j])*HR_f))/square(rho2))*
 exp(-square(x[i]-y[j])/2/square(rho3));
 }
 }
 Sigma = K1+K2;
 return Sigma;
 }
 //function for posterior calculations
 vector post_pred_rng(
 real a1,
 real a2,
 real r1,
 real r2,
 real r3,
 real HR,
 real sn,
 int No,
 vector xo,
 int Np,
 vector xp,
 vector yobs){
 matrix[No,No] Ko;

131

 matrix[Np,Np] Kp;
 matrix[No,Np] Kop;
 matrix[Np,No] Ko_inv_t;
 vector[Np] mu_p;
 matrix[Np,Np] Tau;
 matrix[Np,Np] L2;
 vector[Np] yp;

 //--
 //Kernel Multiple GPs for observed data
 Ko = main_GP(No, xo, No, xo, a1, a2, r1, r2, r3, HR);
 for(n in 1:No) Ko[n,n] += sn;

 //--
 //kernel for predicted data
 Kp = main_GP(Np, xp, Np, xp, a1, a2, r1, r2, r3, HR);
 for(n in 1:Np) Kp[n,n] += sn;

 //--
 //kernel for observed and predicted cross
 Kop = main_GP(No, xo, Np, xp, a1, a2, r1, r2, r3, HR);

 //--
 //Algorithm 2.1 of Rassmussen and Williams...
 Ko_inv_t = Kop'/Ko;
 mu_p = Ko_inv_t*yobs;
 Tau=Kp-Ko_inv_t*Kop;
 L2 = cholesky_decompose(Tau);
 yp = mu_p + L2*rep_vector(normal_rng(0,1), Np);
 return yp;
 }
}

data {
 int<lower=1> N1;
 int<lower=1> N2;
 vector[N1] X;
 vector[N1] Y;
 vector[N2] Xp;
 real<lower=0> mu_HR;
 real<lower=0> sigma_HR;
}

transformed data {
 vector[N1] mu;
 for(n in 1:N1) mu[n] = 0;
}

parameters {
 real<lower=0> a1;
 real<lower=0> a2;
 real<lower=0> r1;
 real<lower=0> r2;
 real<lower=0> r3;
 real<lower = 0.8333, upper = 3.3333> HR;
 real<lower=0> sigma_sq;
}

model{
 matrix[N1,N1] Sigma;
 matrix[N1,N1] L_S;

 //using GP function from above
 Sigma = main_GP(N1, X, N1, X, a1, a2, r1, r2, r3, HR);
 for(n in 1:N1) Sigma[n,n] += sigma_sq;

 L_S = cholesky_decompose(Sigma);
 Y ~ multi_normal_cholesky(mu, L_S);

132

 //priors for parameters
 a1 ~ normal(0,2);
 a2 ~ normal(0,2);
 //incorporate minimum and maximum distances - use invgamma
 r1 ~ inv_gamma(4,4);
 r2 ~ inv_gamma(4,4);
 r3 ~ inv_gamma(4,4);
 sigma_sq ~ normal(0,2);
 HR ~ normal(mu_HR,sigma_HR);
}

generated quantities {
 vector[N2] Ypred = post_pred_rng(a1, a2, r1, r2, r3, HR, sigma_sq, N1, X, N2, Xp, Y);
}

Appendix A.5: Stan Code for 3-Process Gaussian Process Imputation Model

functions{
 //covariance function for main portion of the model
 matrix main_GP(
 int Nx,
 vector x,
 int Ny,
 vector y,
 real alpha1,
 real alpha2,
 real alpha3,
 real rho1,
 real rho2,
 real rho3,
 real rho4,
 real rho5,
 real HR_f,
 real R_f){
 matrix[Nx, Ny] K1;
 matrix[Nx, Ny] K2;
 matrix[Nx, Ny] K3;
 matrix[Nx, Ny] Sigma;

 //periodic covariance that does not decay
 for(i in 1:Nx){
 for (j in 1:Ny){
 K1[i, j] = alpha1*exp(-square(x[i]-y[j])/2/square(rho1));
 }
 }

 //specifying first quasi-periodic process that incorporates heart rate
 for(i in 1:Nx){
 for(j in 1:Ny){
 K2[i, j] = alpha2*exp(-2*square(sin(pi()*fabs(x[i]-
y[j])*HR_f))/square(rho2))*
 exp(-square(x[i]-y[j])/2/square(rho3));
 }
 }

 //specifying second quasi-periodic process that incorporates heart rate
 for(i in 1:Nx){
 for(j in 1:Ny){
 K3[i, j] = alpha3*exp(-2*square(sin(pi()*fabs(x[i]-
y[j])*HR_f))/square(rho4))*
 exp(-2*square(sin(pi()*fabs(x[i]-y[j])*R_f))/square(rho5));
 }
 }
 Sigma = K1+K2+K3;
 return Sigma;
 }

133

 //function for posterior calculations
 vector post_pred_rng(
 real a1,
 real a2,
 real a3,
 real r1,
 real r2,
 real r3,
 real r4,
 real r5,
 real HR,
 real R,
 real sn,
 int No,
 vector xo,
 int Np,
 vector xp,
 vector yobs){
 matrix[No,No] Ko;
 matrix[Np,Np] Kp;
 matrix[No,Np] Kop;
 matrix[Np,No] Ko_inv_t;
 vector[Np] mu_p;
 matrix[Np,Np] Tau;
 matrix[Np,Np] L2;
 vector[Np] yp;

 //--
 //Kernel Multiple GPs for observed data
 Ko = main_GP(No, xo, No, xo, a1, a2, a3, r1, r2, r3, r4, r5, HR, R);
 for(n in 1:No) Ko[n,n] += sn;

 //--
 //kernel for predicted data
 Kp = main_GP(Np, xp, Np, xp, a1, a2, a3, r1, r2, r3, r4, r5, HR, R);
 for(n in 1:Np) Kp[n,n] += sn;

 //--
 //kernel for observed and predicted cross
 Kop = main_GP(No, xo, Np, xp, a1, a2, a3, r1, r2, r3, r4, r5, HR, R);

 //--
 //Algorithm 2.1 of Rassmussen and Williams...
 Ko_inv_t = Kop'/Ko;
 mu_p = Ko_inv_t*yobs;
 Tau=Kp-Ko_inv_t*Kop;
 L2 = cholesky_decompose(Tau);
 yp = mu_p + L2*rep_vector(normal_rng(0,1), Np);
 return yp;
 }
}

data {
 int<lower=1> N1;
 int<lower=1> N2;
 vector[N1] X;
 vector[N1] Y;
 vector[N2] Xp;
 real<lower=0> mu_HR;
 real<lower=0> mu_R;
 real<lower=0> sigma_HR;
 real<lower=0> sigma_R;
}

transformed data {
 vector[N1] mu;
 for(n in 1:N1) mu[n] = 0;
}

134

parameters {
 real<lower=0> a1;
 real<lower=0> a2;
 real<lower=0> a3;
 real<lower=0> r1;
 real<lower=0> r2;
 real<lower=0> r3;
 real<lower=0> r4;
 real<lower=0> r5;
 real<lower=0> r6;
 real<lower = 0.8333, upper = 3.3333> HR;
 real<lower = 0.1667, upper = 0.5000> R;
 real<lower=0> sigma_sq;
}

model{
 matrix[N1,N1] Sigma;
 matrix[N1,N1] L_S;

 //using GP function from above
 Sigma = main_GP(N1, X, N1, X, a1, a2, a3, r1, r2, r3, r4, r5, HR, R);
 for(n in 1:N1) Sigma[n,n] += sigma_sq;

 L_S = cholesky_decompose(Sigma);
 Y ~ multi_normal_cholesky(mu, L_S);

 //priors for parameters
 a1 ~ normal(0,2);
 a2 ~ normal(0,2);
 a3 ~ normal(0,2);
 //incorporate minimum and maximum distances - use invgamma
 r1 ~ inv_gamma(4,4);
 r2 ~ inv_gamma(4,4);
 r3 ~ inv_gamma(4,4);
 r4 ~ inv_gamma(4,4);
 r5 ~ inv_gamma(4,4);
 sigma_sq ~ normal(0,2);
 HR ~ normal(mu_HR,sigma_HR);
 R ~ normal(mu_R, sigma_R);
}

generated quantities {
 vector[N2] Ypred = post_pred_rng(a1, a2, a3, r1, r2, r3, r4, r5, HR, R, sigma_sq, N1, X, N2,
Xp, Y);
}

Appendix A.6: Stan Code for 4-Process Gaussian Process Imputation Model

functions{
 //covariance function for main portion of the model
 matrix main_GP(
 int Nx,
 vector x,
 int Ny,
 vector y,
 real alpha1,
 real alpha2,
 real alpha3,
 real alpha4,
 real rho1,
 real rho2,
 real rho3,
 real rho4,
 real rho5,
 real rho6,
 real rho7,

135

 real HR_f,
 real R_f){
 matrix[Nx, Ny] K1;
 matrix[Nx, Ny] K2;
 matrix[Nx, Ny] K3;
 matrix[Nx, Ny] K4;
 matrix[Nx, Ny] Sigma;

 //periodic covariance that does not decay
 for(i in 1:Nx){
 for (j in 1:Ny){
 K1[i, j] = alpha1*exp(-square(x[i]-y[j])/2/square(rho1));
 }
 }

 //specifying first quasi-periodic process that incorporates heart rate
 for(i in 1:Nx){
 for(j in 1:Ny){
 K2[i, j] = alpha2*exp(-2*square(sin(pi()*fabs(x[i]-
y[j])*HR_f))/square(rho2))*
 exp(-square(x[i]-y[j])/2/square(rho3));
 }
 }

 //specifying second quasi-periodic process that incorporates heart rate
 for(i in 1:Nx){
 for(j in 1:Ny){
 K3[i, j] = alpha3*exp(-2*square(sin(pi()*fabs(x[i]-
y[j])*HR_f))/square(rho4))*
 exp(-2*square(sin(pi()*fabs(x[i]-y[j])*R_f))/square(rho5));
 }
 }
 for(i in 1:Nx){
 for(j in 1:Ny){
 K4[i, j] = alpha4*exp(-2*square(sin(pi()*fabs(x[i]-
y[j])*HR_f))/square(rho6))*
 exp(-2*square(sin(pi()*fabs(x[i]-y[j])*.1))/square(rho7));
 }
 }
 Sigma = K1+K2+K3+K4;
 return Sigma;
 }
 //function for posterior calculations
 vector post_pred_rng(
 real a1,
 real a2,
 real a3,
 real a4,
 real r1,
 real r2,
 real r3,
 real r4,
 real r5,
 real r6,
 real r7,
 real HR,
 real R,
 real sn,
 int No,
 vector xo,
 int Np,
 vector xp,
 vector yobs){
 matrix[No,No] Ko;
 matrix[Np,Np] Kp;
 matrix[No,Np] Kop;
 matrix[Np,No] Ko_inv_t;
 vector[Np] mu_p;
 matrix[Np,Np] Tau;

136

 matrix[Np,Np] L2;
 vector[Np] yp;

 //--
 //Kernel Multiple GPs for observed data
 Ko = main_GP(No, xo, No, xo, a1, a2, a3, a4, r1, r2, r3, r4, r5, r6, r7, HR, R);
 for(n in 1:No) Ko[n,n] += sn;

 //--
 //kernel for predicted data
 Kp = main_GP(Np, xp, Np, xp, a1, a2, a3, a4, r1, r2, r3, r4, r5, r6, r7, HR, R);
 for(n in 1:Np) Kp[n,n] += sn;

 //--
 //kernel for observed and predicted cross
 Kop = main_GP(No, xo, Np, xp, a1, a2, a3, a4, r1, r2, r3, r4, r5, r6, r7, HR, R);

 //--
 //Algorithm 2.1 of Rassmussen and Williams...
 Ko_inv_t = Kop'/Ko;
 mu_p = Ko_inv_t*yobs;
 Tau=Kp-Ko_inv_t*Kop;
 L2 = cholesky_decompose(Tau);
 yp = mu_p + L2*rep_vector(normal_rng(0,1), Np);
 return yp;
 }
}

data {
 int<lower=1> N1;
 int<lower=1> N2;
 vector[N1] X;
 vector[N1] Y;
 vector[N2] Xp;
 real<lower=0> mu_HR;
 real<lower=0> mu_R;
 real<lower=0> sigma_HR;
 real<lower=0> sigma_R;
}

transformed data {
 vector[N1] mu;
 for(n in 1:N1) mu[n] = 0;
}

parameters {
 real<lower=0> a1;
 real<lower=0> a2;
 real<lower=0> a3;
 real<lower=0> a4;
 real<lower=0> r1;
 real<lower=0> r2;
 real<lower=0> r3;
 real<lower=0> r4;
 real<lower=0> r5;
 real<lower=0> r6;
 real<lower=0> r7;
 real<lower = 0.8333, upper = 3.3333> HR;
 real<lower = 0.1667, upper = 0.5000> R;
 real<lower=0> sigma_sq;
}

model{
 matrix[N1,N1] Sigma;
 matrix[N1,N1] L_S;

 //using GP function from above
 Sigma = main_GP(N1, X, N1, X, a1, a2, a3, a4, r1, r2, r3, r4, r5, r6, r7, HR, R);
 for(n in 1:N1) Sigma[n,n] += sigma_sq;

137

 L_S = cholesky_decompose(Sigma);
 Y ~ multi_normal_cholesky(mu, L_S);

 //priors for parameters
 a1 ~ normal(0,2);
 a2 ~ normal(0,2);
 a3 ~ normal(0,2);
 a4 ~ normal(0,2);
 //incorporate minimum and maximum distances - use invgamma
 r1 ~ inv_gamma(4,4);
 r2 ~ inv_gamma(4,4);
 r3 ~ inv_gamma(4,4);
 r4 ~ inv_gamma(4,4);
 r5 ~ inv_gamma(4,4);
 r6 ~ inv_gamma(4,4);
 r7 ~ inv_gamma(4,4);
 sigma_sq ~ normal(0,2);
 HR ~ normal(mu_HR,sigma_HR);
 R ~ normal(mu_R, sigma_R);
}

generated quantities {
 vector[N2] Ypred = post_pred_rng(a1, a2, a3, a4, r1, r2, r3, r4, r5, r6, r7, HR, R, sigma_sq,
 N1, X, N2, Xp, Y);
}

138

Appendix B: Model and Data Analysis/Summary Code

Appendix B.1: Summarizing Gaussian Process Model Performance Under Varying
Conditions - getting basic summary tables together.

#Extracting summary data from GP data sets
GP1_summary <- dat.GP1 %>%
 group_by(impute.Hz.vec, impute.fac.vec, GP.Hz.vec)%>%
 summarize(Med_bias = median(bias_rmssd15),
 Q75_bias = quantile(bias_rmssd15, .75),
 Q25_bias = quantile(bias_rmssd15, .25),
 Mean_bias = mean(bias_rmssd15),
 SD_bias = sd(bias_rmssd15),
 Max_bias = max(bias_rmssd15),
 Min_bias = min(bias_rmssd15),
 Mean_HR = mean(HR.mean.vec)*60,
 SD_HR = sd(HR.mean.vec)*60,
 Max_HR = max(HR.mean.vec)*60,
 Min_HR = min(HR.mean.vec)*60,
 Med_Rhat = median(HR.Rhat.vec),
 Mean_Rhat = mean(HR.Rhat.vec),
 Prop_Rhat_1.1 = length(HR.Rhat.vec[HR.Rhat.vec<1.1])/40*100,
 Mean_tot.time = mean(impute.tot),
 Med_runtime = median(runtime),
 Mean_runtime = mean(runtime),
 Max_runtime = max(runtime),
 Min_runtime = min(runtime))

GP1_125_summary_4<-GP1_summary[GP1_summary$impute.Hz.vec==125 & GP1_summary$GP.Hz.vec==4,]
t_GP1_125_summary_4<-t(GP1_125_summary_4)
colnames(t_GP1_125_summary_4)<-c('1x', '2x', '3x')

GP1_125_summary_8<-GP1_summary[GP1_summary$impute.Hz.vec==125 & GP1_summary$GP.Hz.vec==8,]
t_GP1_125_summary_8<-t(GP1_125_summary_8)
colnames(t_GP1_125_summary_8)<-c('1x', '2x', '3x')

GP1_125_summary_12<-GP1_summary[GP1_summary$impute.Hz.vec==125 & GP1_summary$GP.Hz.vec==12,]
t_GP1_125_summary_12<-t(GP1_125_summary_12)
colnames(t_GP1_125_summary_12)<-c('1x', '2x', '3x')

GP1_125_comp<-cbind(t_GP1_125_summary_4, t_GP1_125_summary_8, t_GP1_125_summary_12)
GP1_125_comp<-GP1_125_comp[-1:-3,]
rownames(GP1_125_comp)<-c('Median Bias',
 'Bias Q75',
 'Bias Q25',
 'Mean Bias',
 'SD Bias',
 'Maximum Deviation',
 'Minimum Deviation',
 'Mean HR (BPM)',
 'SD HR (BPM)',
 'Maximum HR (BPM)',
 'Minimum HR (BPM)',
 'Median R-hat',
 'Mean R-hat',
 'R-hats < 1.1',
 'Avg Impute Total (secs)',
 'Median runtime (mins)',
 'Mean runtime (mins)',
 'Maximum runtime (mins)',
 'Minimum runtime (mins)')

colnames(GP1_125_comp)<- paste(rep(c('1x', '2x', '3x'), 3), 'Window')
stargazer::stargazer(GP1_125_comp,
 summary = FALSE,
 rownames = TRUE,
 out = paste0(final.graphics, '/test.html'))

139

GP1_250_summary_4<-GP1_summary[GP1_summary$impute.Hz.vec==250 & GP1_summary$GP.Hz.vec==4,]
t_GP1_250_summary_4<-t(GP1_250_summary_4)
colnames(t_GP1_250_summary_4)<-c('1x', '2x', '3x')

GP1_250_summary_8<-GP1_summary[GP1_summary$impute.Hz.vec==250 & GP1_summary$GP.Hz.vec==8,]
t_GP1_250_summary_8<-t(GP1_250_summary_8)
colnames(t_GP1_250_summary_8)<-c('1x', '2x', '3x')

GP1_250_summary_12<-GP1_summary[GP1_summary$impute.Hz.vec==250 & GP1_summary$GP.Hz.vec==12,]
t_GP1_250_summary_12<-t(GP1_250_summary_12)
colnames(t_GP1_250_summary_12)<-c('1x', '2x', '3x')

GP1_250_comp<-cbind(t_GP1_250_summary_4, t_GP1_250_summary_8, t_GP1_250_summary_12)
GP1_250_comp<-GP1_250_comp[-1:-3,]
rownames(GP1_250_comp)<-c('Median Bias',
 'Bias Q75',
 'Bias Q25',
 'Mean Bias',
 'SD Bias',
 'Maximum Deviation',
 'Minimum Deviation',
 'Mean HR (BPM)',
 'SD HR (BPM)',
 'Maximum HR (BPM)',
 'Minimum HR (BPM)',
 'Median R-hat',
 'Mean R-hat',
 'R-hats < 1.1',
 'Avg Impute Total (secs)',
 'Median runtime (mins)',
 'Mean runtime (mins)',
 'Maximum runtime (mins)',
 'Minimum runtime (mins)')

colnames(GP1_250_comp)<- paste(rep(c('1x', '2x', '3x'), 3), 'Window')
stargazer::stargazer(GP1_250_comp,
 summary = FALSE,
 rownames = TRUE,
 out = paste0(final.graphics, '/test.html'))

GP2_summary <- dat.GP2 %>%
 group_by(impute.Hz.vec, impute.fac.vec, GP.Hz.vec)%>%
 summarize(Med_bias = median(bias_rmssd15),
 Q75_bias = quantile(bias_rmssd15, .75),
 Q25_bias = quantile(bias_rmssd15, .25),
 Mean_bias = mean(bias_rmssd15),
 SD_bias = sd(bias_rmssd15),
 Max_bias = max(bias_rmssd15),
 Min_bias = min(bias_rmssd15),
 Mean_HR = mean(HR.mean.vec)*60,
 SD_HR = sd(HR.mean.vec)*60,
 Max_HR = max(HR.mean.vec)*60,
 Min_HR = min(HR.mean.vec)*60,
 Med_Rhat = median(HR.Rhat.vec),
 Mean_Rhat = mean(HR.Rhat.vec),
 Prop_Rhat_1.1 = length(HR.Rhat.vec[HR.Rhat.vec<1.1])/40*100,
 Mean_tot.time = mean(impute.tot),
 Med_runtime = median(runtime),
 Mean_runtime = mean(runtime),
 Max_runtime = max(runtime),
 Min_runtime = min(runtime))

GP2_125_summary_4<-GP2_summary[GP2_summary$impute.Hz.vec==125 & GP2_summary$GP.Hz.vec==4,]
t_GP2_125_summary_4<-t(GP2_125_summary_4)

140

colnames(t_GP2_125_summary_4)<-c('1x', '2x', '3x')

GP2_125_summary_8<-GP2_summary[GP2_summary$impute.Hz.vec==125 & GP2_summary$GP.Hz.vec==8,]
t_GP2_125_summary_8<-t(GP2_125_summary_8)
colnames(t_GP2_125_summary_8)<-c('1x', '2x', '3x')

GP2_125_summary_12<-GP2_summary[GP2_summary$impute.Hz.vec==125 & GP2_summary$GP.Hz.vec==12,]
t_GP2_125_summary_12<-t(GP2_125_summary_12)
colnames(t_GP2_125_summary_12)<-c('1x', '2x', '3x')

GP2_125_comp<-cbind(t_GP2_125_summary_4, t_GP2_125_summary_8, t_GP2_125_summary_12)
GP2_125_comp<-GP2_125_comp[-1:-3,]
rownames(GP2_125_comp)<-c('Median Bias',
 'Bias Q75',
 'Bias Q25',
 'Mean Bias',
 'SD Bias',
 'Maximum Deviation',
 'Minimum Deviation',
 'Mean HR (BPM)',
 'SD HR (BPM)',
 'Maximum HR (BPM)',
 'Minimum HR (BPM)',
 'Median R-hat',
 'Mean R-hat',
 'R-hats < 1.1',
 'Avg Impute Total (secs)',
 'Median runtime (mins)',
 'Mean runtime (mins)',
 'Maximum runtime (mins)',
 'Minimum runtime (mins)')

colnames(GP2_125_comp)<- paste(rep(c('1x', '2x', '3x'), 3), 'Window')
stargazer::stargazer(GP2_125_comp,
 summary = FALSE,
 rownames = TRUE,
 out = paste0(final.graphics, '/test.html'))

GP2_250_summary_4<-GP2_summary[GP2_summary$impute.Hz.vec==250 & GP2_summary$GP.Hz.vec==4,]
t_GP2_250_summary_4<-t(GP2_250_summary_4)
colnames(t_GP2_250_summary_4)<-c('1x', '2x', '3x')

GP2_250_summary_8<-GP2_summary[GP2_summary$impute.Hz.vec==250 & GP2_summary$GP.Hz.vec==8,]
t_GP2_250_summary_8<-t(GP2_250_summary_8)
colnames(t_GP2_250_summary_8)<-c('1x', '2x', '3x')

GP2_250_summary_12<-GP2_summary[GP2_summary$impute.Hz.vec==250 & GP2_summary$GP.Hz.vec==12,]
t_GP2_250_summary_12<-t(GP2_250_summary_12)
colnames(t_GP2_250_summary_12)<-c('1x', '2x', '3x')

GP2_250_comp<-cbind(t_GP2_250_summary_4, t_GP2_250_summary_8, t_GP2_250_summary_12)
GP2_250_comp<-GP2_250_comp[-1:-3,]
rownames(GP2_250_comp)<-c('Median Bias',
 'Bias Q75',
 'Bias Q25',
 'Mean Bias',
 'SD Bias',
 'Maximum Deviation',
 'Minimum Deviation',
 'Mean HR (BPM)',
 'SD HR (BPM)',
 'Maximum HR (BPM)',
 'Minimum HR (BPM)',
 'Median R-hat',
 'Mean R-hat',
 'R-hats < 1.1',
 'Avg Impute Total (secs)',
 'Median runtime (mins)',

141

 'Mean runtime (mins)',
 'Maximum runtime (mins)',
 'Minimum runtime (mins)')

colnames(GP2_250_comp)<- paste(rep(c('1x', '2x', '3x'), 3), 'Window')
stargazer::stargazer(GP2_250_comp,
 summary = FALSE,
 rownames = TRUE,
 out = paste0(final.graphics, '/test.html'))

GP3_summary <- dat.GP3 %>%
 group_by(impute.Hz.vec, impute.fac.vec, GP.Hz.vec)%>%
 summarize(Med_bias = median(bias_rmssd15),
 Q75_bias = quantile(bias_rmssd15, .75),
 Q25_bias = quantile(bias_rmssd15, .25),
 Mean_bias = mean(bias_rmssd15),
 SD_bias = sd(bias_rmssd15),
 Max_bias = max(bias_rmssd15),
 Min_bias = min(bias_rmssd15),
 Mean_HR = mean(HR.mean.vec)*60,
 SD_HR = sd(HR.mean.vec)*60,
 Max_HR = max(HR.mean.vec)*60,
 Min_HR = min(HR.mean.vec)*60,
 Med_Rhat = median(HR.Rhat.vec),
 Mean_Rhat = mean(HR.Rhat.vec),
 Prop_Rhat_1.1 = length(HR.Rhat.vec[HR.Rhat.vec<1.1])/40*100,
 Mean_tot.time = mean(impute.tot),
 Med_runtime = median(runtime),
 Mean_runtime = mean(runtime),
 Max_runtime = max(runtime),
 Min_runtime = min(runtime))

GP3_125_summary_4<-GP3_summary[GP3_summary$impute.Hz.vec==125 & GP3_summary$GP.Hz.vec==4,]
t_GP3_125_summary_4<-t(GP3_125_summary_4)
colnames(t_GP3_125_summary_4)<-c('1x', '2x', '3x')

GP3_125_summary_8<-GP3_summary[GP3_summary$impute.Hz.vec==125 & GP3_summary$GP.Hz.vec==8,]
t_GP3_125_summary_8<-t(GP3_125_summary_8)
colnames(t_GP3_125_summary_8)<-c('1x', '2x', '3x')

GP3_125_summary_12<-GP3_summary[GP3_summary$impute.Hz.vec==125 & GP3_summary$GP.Hz.vec==12,]
t_GP3_125_summary_12<-t(GP3_125_summary_12)
colnames(t_GP3_125_summary_12)<-c('1x', '2x', '3x')

GP3_125_comp<-cbind(t_GP3_125_summary_4, t_GP3_125_summary_8, t_GP3_125_summary_12)
GP3_125_comp<-GP3_125_comp[-1:-3,]
rownames(GP3_125_comp)<-c('Median Bias',
 'Bias Q75',
 'Bias Q25',
 'Mean Bias',
 'SD Bias',
 'Maximum Deviation',
 'Minimum Deviation',
 'Mean HR (BPM)',
 'SD HR (BPM)',
 'Maximum HR (BPM)',
 'Minimum HR (BPM)',
 'Median R-hat',
 'Mean R-hat',
 'R-hats < 1.1',
 'Avg Impute Total (secs)',
 'Median runtime (mins)',
 'Mean runtime (mins)',
 'Maximum runtime (mins)',
 'Minimum runtime (mins)')

colnames(GP3_125_comp)<- paste(rep(c('1x', '2x', '3x'), 3), 'Window')

142

stargazer::stargazer(GP3_125_comp,
 summary = FALSE,
 rownames = TRUE,
 out = paste0(final.graphics, '/test.html'))

GP3_250_summary_4<-GP3_summary[GP3_summary$impute.Hz.vec==250 & GP3_summary$GP.Hz.vec==4,]
t_GP3_250_summary_4<-t(GP3_250_summary_4)
colnames(t_GP3_250_summary_4)<-c('1x', '2x', '3x')

GP3_250_summary_8<-GP3_summary[GP3_summary$impute.Hz.vec==250 & GP3_summary$GP.Hz.vec==8,]
t_GP3_250_summary_8<-t(GP3_250_summary_8)
colnames(t_GP3_250_summary_8)<-c('1x', '2x', '3x')

GP3_250_summary_12<-GP3_summary[GP3_summary$impute.Hz.vec==250 & GP3_summary$GP.Hz.vec==12,]
t_GP3_250_summary_12<-t(GP3_250_summary_12)
colnames(t_GP3_250_summary_12)<-c('1x', '2x', '3x')

GP3_250_comp<-cbind(t_GP3_250_summary_4, t_GP3_250_summary_8, t_GP3_250_summary_12)
GP3_250_comp<-GP3_250_comp[-1:-3,]
rownames(GP3_250_comp)<-c('Median Bias',
 'Bias Q75',
 'Bias Q25',
 'Mean Bias',
 'SD Bias',
 'Maximum Deviation',
 'Minimum Deviation',
 'Mean HR (BPM)',
 'SD HR (BPM)',
 'Maximum HR (BPM)',
 'Minimum HR (BPM)',
 'Median R-hat',
 'Mean R-hat',
 'R-hats < 1.1',
 'Avg Impute Total (secs)',
 'Median runtime (mins)',
 'Mean runtime (mins)',
 'Maximum runtime (mins)',
 'Minimum runtime (mins)')

colnames(GP3_250_comp)<- paste(rep(c('1x', '2x', '3x'), 3), 'Window')
stargazer::stargazer(GP3_250_comp,
 summary = FALSE,
 rownames = TRUE,
 out = paste0(final.graphics, '/test.html'))

Appendix B.2: The following code is an example of the code used create a series of
Bayesian multilevel models in which laboratory task predicted child physiology. Three
versions of this model were analyzed, one for RSA, one for RMSSD, and one for HP.
Imputation code appears in the top portion of the code block. The bayes.to.txt()
function is a custom function the code for which can be found in

fml<-formula(RSA +pEdits ~ 1 + Task + CHILD.sex.F + AGE01 + BIQ_avg_MR85 + (1|ID))

imp<-panImpute(data = RSA.long.comp,
 formula = fml,
 n.burn = 50000,
 n.iter = 5000,
 m = 20)
plot(imp) #imputation largely successful - upping the burn-in phase

#Extracting Imputed Datasets
RSA.mitml<-mitmlComplete(imp)

143

RSA.list<-list()
for(i in 1:20){
 RSA.list[[i]]<-RSA.mitml[[i]]
 RSA.list[[i]]$V1<-ifelse(RSA.list[[i]]$Task=='Video1', 1, 0)
 RSA.list[[i]]$Clwn<-ifelse(RSA.list[[i]]$Task=='Clown', 1, 0)
 RSA.list[[i]]$V2<-ifelse(RSA.list[[i]]$Task=='Video2', 1, 0)
 RSA.list[[i]]$Kids<-ifelse(RSA.list[[i]]$Task=='Kids', 1, 0)
 RSA.list[[i]]$Intro<-ifelse(RSA.list[[i]]$Task=='Intro', 1, 0)
 RSA.list[[i]]$V3<-ifelse(RSA.list[[i]]$Task=='Video3', 1, 0)
}

RSA.MLM.fit.V1.crtl<-brm_multiple(formula = RSA ~ 1 + Clwn + V2 + Kids + Intro + V3 +
 c.AGE01 + CHILD.sex.F + pEdits +
 (1|ID),
 data = RSA.list,
 prior = c(set_prior('normal(0,2)', class='sd'),
 set_prior('normal(6.33, 1)',class='Intercept'),
 set_prior('normal(0,2)', class='b')),
 warmup = 4000,
 iter = 8000,
 thin = 2,
 chains = 4,
 control = list(adapt_delta=.80,
 max_treedepth=10))

bayes.to.txt(model = RSA.MLM.fit.V1.crtl,
 out.folder = out.folder,
 file = 'RSA_Video1_intercept_ctrl_pEdits',
 DF = RSA.list[[sample(1:length(RSA.list), size = 1)]],
 tot.pars = 10,
 impute = T)

Appendix B.3: Code for the custom bayes.to.txt() function used to simplify

#Customized Summary function
bayes.to.txt<-function(model=NULL,
 out.folder=NULL,
 file=NULL,
 DF=NULL,
 tot.pars=3,
 impute=TRUE){
 require(parallel)
 require(benchmarkme)
 sink(paste0(out.folder, '/', file, '.txt'))
 cat('System Information:')
 cat('\n===')
 cat(paste0('\nProcessor:', '\t\t\t', benchmarkme::get_cpu()$model_name))
 cat(paste0('\nNumber of Threads:', '\t\t', detectCores(logical=T)))
 cat(paste0('\nRAM:', '\t\t\t\t', paste(round(benchmarkme::get_ram()/1073741824), 'GB')))
 cat('\n===\n')

 cat('\n\nModel Information:')
 cat('\n===')
 cat('\n\nFormula (lme4 syntax):')
 cat('\n---\n')
 print(model$formula)
 cat('\n\nPriors:')
 cat('\n---\n')
 print(prior_summary(model))
 cat('\n\nStan Code:')
 cat('\n---\n')
 print(make_stancode(model$formula, data=DF, family=model$family$family))
 cat('\n===\n')

 cat('\n\nStan Arguments:')

144

 cat('\n===')
 cat(paste0('\nAdapt Delta:', '\t\t\t', model$fit@stan_args[[1]]$control$adapt_delta))
 cat(paste0('\nMaximum Tree Depth:', '\t\t', model$fit@stan_args[[1]]$control$max_treedepth))
 cat('\n===\n')

 cat('\n\nVariance Explained:')
 cat('\n===')
 cat('\n\nResidual Variance:')
 cat('\n---\n')
 print(sjstats::icc(model, posterior = T), prob =.95, digits=3)
 cat('\n\nBayesian R-squared (overall variance explained):')
 cat('\n---\n')
 print(bayes_R2(model))
 cat('\n===\n')

 cat('\n\nModel Summary:')
 cat('\n===\n')
 print(summary(model))

 if(impute==0){
 cat('WARNING! If using multiply imputed datasets ignore R=hat')
 cat('\nUse the code below to obtain interpretable R=hat values for each data set')
 cat('\nround(modelname$rhats[,1:tot.pars], 3)')
 cat('\nwhere "tot.pars" is the total number of model parameters to return (usually fixed
effects)')
 }
 else{
 cat('\n\nPotential Scale Reduction Factor for Each Imputed Dataset:')

cat('\n===\n')
 print(round(model$rhats[,1:tot.pars], 3))

cat('\n===\n')
 }
 sink()
}

Appendix B.4: Example model code for a laboratory-based physiological measure
predicting child social behaviors during periods of free play in their preschool
classrooms. This basic model was repeated multiple times - for tonic measures and
dynamic measures of RSA.

#Tonic RSA predicting Reticence
Tonic_RSA.Ret<-brm_multiple(Ret.tot | trials(Obs.tot) ~ c.Age + CHILD.sex.F +
 Tonic_RSA+(1|ID),
 prior = c(set_prior('normal(0,2)', class='sd'),
 set_prior('normal(0,2)', class='b')),
 data = POS.RSA.list,
 family = binomial())
summary(Tonic_RSA.Ret)

145

Appendix C: Code Used to Generate Figures

Appendix C.1: Code used to generate figure 2.4

setwd('/home/mbarsted/Dropbox/Dissertation/IBI_pilot')
dat<-read.table('tap_lap2.txt', header=F, sep='\t', skip=11)
dat<-dat[,-4]
dat<-dat[1:300000, 1]

#Generating IBI file from raw heart rate data:
spec.dat<-pspectrum(DF.temp$IBI, x.frqsamp = 4)

DF.temp2<-data.frame(Frequency=spec.dat$freq[spec.dat$freq<.5],
 Power=spec.dat$spec[spec.dat$freq<.5])

g1<-ggplot()+
 geom_rect(data=data.frame(xmin=0,
 xmax=.15,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=.15,
 xmax=.40,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='red',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=.40,
 xmax=Inf,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='gray',
 alpha=.5)+
 geom_line(data=DF.temp2, aes(x=Frequency, y=Power))+
 ylab('Power Spectral Density (PSD)')+xlab('Frequency (Hz)')+
 annotate(geom='text', x=.075, y = .0035, label='ULF-HRV & LF-HRV')+
 annotate(geom='text', x=.275, y = .03, label='HF-HRV')

png(paste0(paste0(wd, '/Figure_2_X_Spectral Analysis.png')),
 res=300, units = 'in', width=8, height = 5)
g1
dev.off()

Appendix C.2: Code used to generate Figure 3.1

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Filtering_MS.png'), res=300, units='in', height = 5, width=8)
par(mfrow=c(3,1))
plot(y=dat.noise, x=1:2500/250, type='l',
 main='PPG Signal with Random Noise',
 ylab='Volts',
 xlab='Time (s)')

plot(y=dat.med, x=1:2500/250, type='l',
 main='PPG Signal after Median Filter',
 ylab='Volts',
 xlab='Time (s)')

plot(y=dat.smooth$y, x=1:2500/250, type='l',
 main='PPG Signal after Smoothing Splines',
 ylab='Volts',

146

 xlab='Time (s)')
dev.off()

Appendix C.3: Code used to generate figure 3.2

set.seed(430093)
Sample_rate<-1000
time<-seq(0, 10, by=1/Sample_rate) #putting time into seconds
pi<-3.14159265359
n.sims<-1000

#Generating Numerous Samples
x<-matrix(0, length(time), n.sims)
amps<-runif(n.sims, min = .5, max = 3)

Hfreq<-vector()
for(j in 1:n.sims){
 Hfreq.temp<-rnorm(1, 80/60, sd=.25)
 x[,j]<-amps[j]*sin(2*pi*time*Hfreq.temp*j)
 Hfreq<-c(Hfreq, Hfreq.temp)
}

#Using differenced values to identify peaks and troughs
shape <- c(NA, NA,diff(sign(diff(x[,1], na.pad = T))))

#Extracting data for plotting purposes
Sim_wav.diff<-diff(x[,1], na.pad=T)
DF<-data.frame(time=time,
 Sim_wv=x[,1],
 Sim_wav.diff=c(NA, as.vector(as.numeric(scale(Sim_wav.diff)))))
DF$Min_Max<-rep(NA, length(DF[,1]))
DF$Min_Max<-ifelse(shape<0, 'Maximum', DF$Min_Max)
DF$Min_Max<-ifelse(shape>0, 'Minimum', DF$Min_Max)

DF2<-DF[!is.na(DF$Min_Max),]

#Plotting simulated and differenced time series overlays
g1<-ggplot()+
 geom_line(data=DF,aes(y=Sim_wv, x=time,
 lty=c('Original Simulated Signal')), lwd=1.5)+
 geom_point(data=DF2, aes(x=time, y=Sim_wv, color=Min_Max, group=Min_Max,
 shape=Min_Max), size=4)+
 geom_line(data=DF, aes(y=Sim_wav.diff, x=time, lty='Differenced Signal'),
 lwd=1.5)+
 geom_hline(yintercept = 0)+
 geom_point(data=DF2, aes(x=time, y=Sim_wav.diff, color=Min_Max,
 group=Min_Max, shape=Min_Max), size=4)+
 guides(color=guide_legend(title="Minimum/Maximum"),
 shape=guide_legend(title="Minimum/Maximum"),
 linetype=guide_legend(title="Waveform"))+
 ggtitle('Graphic Representation of Peak Detection Algorithm Outputs')+
 ylab('Voltage')+xlab('Time (s)')

png(paste0(paste0(wd, '/Figure_3_1_Peak Detection.png')), res=300,
units = 'in', width=8, height = 5)
g1
dev.off()

Appendix C.4: Code used to generate Figure 3.3

set.seed(122411)
Sample_rate<-1000

147

time<-seq(0, 10, by=1/Sample_rate) #putting time into seconds
pi<-3.14159265359
n.sims<-1000

#simulating data
x<-matrix(0, length(time), n.sims)
amps<-runif(n.sims, min = .5, max = 3)

Hfreq<-vector()
for(j in 1:n.sims){
 Hfreq.temp<-rnorm(1, 80/60, sd=.25)
 x[,j]<-amps[j]*sin(2*pi*time*Hfreq.temp*j)
 Hfreq<-c(Hfreq, Hfreq.temp)
}

PPG.temp<-data.frame(PPG=x[,1], Time=time)

IBI<-iter.IBI(x=x[,1], ds=Sample_rate, iter.length = 50)
g1<-ggplot()+
 geom_line(data=PPG.temp, aes(y=PPG, x=Time))+
 geom_vline(data=IBI, aes(xintercept=Time), lty='dashed', color='gray70')+
 xlab('Time (s)')

png(paste0(paste0(wd, '/Figure_3_2_Peak Detection.png')), res=300,
 units = 'in', width=8, height = 5)
g1
dev.off()

Appendix C.5: Code used to generate figure 3.11

setwd('/home/mbarsted/Dropbox/Dissertation/IBI_pilot')
dat<-read.table('tap_lap2.txt', header=F, sep='\t', skip=11)
dat<-dat[,-4]
dat<-dat[1:300000, 1]

#plotting for figures and presentation:
DF.plot<-data.frame(Time = (1:300000)/2000,
 PPG = dat)
DF.plot2$PPG[140000:160000]<-NA

#Targeting the data
g1<-ggplot(data=DF.plot, aes(x=Time, y=PPG))+
 geom_rect(data=data.frame(xmin=140000/2000,
 xmax=160000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue', alpha=.5, inherit.aes = F)+
 geom_line(data=DF.plot, aes(x=Time, y=PPG), inherit.aes = F)

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Base_graphic.png'), res=300, units='in', height = 5, width=8)
g1
dev.off()

#Removing the data
g1<-ggplot(data=DF.plot, aes(x=Time, y=PPG))+
 geom_rect(data=data.frame(xmin=140000/2000,
 xmax=160000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue', alpha=.5, inherit.aes = F)+
 geom_line(data=DF.plot2, aes(x=Time, y=PPG), inherit.aes = F)

148

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Base_graphic_dataRemoved.png'), res=300, units='in', height = 5, width=8)
g1
dev.off()

#Targeting Good data
g1<-ggplot()+
 geom_rect(data=data.frame(xmin=100000/2000,
 xmax=139999/2000,
 ymin=-Inf, #Depiction of Imputation Run results
g1<-ggplot()+
 geom_rect(data=data.frame(xmin=100000/2000,
 xmax=139999/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=160001/2000,
 xmax=200000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=140000/2000,
 xmax=160000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue', alpha=.5, inherit.aes = F)+
 geom_line(data=DF.plot, aes(x=Time, y=PPG))
g1
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=160001/2000,
 xmax=200000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_line(data=DF.plot2, aes(x=Time, y=PPG))
g1

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Data_for_model.png'), res=300, units='in', height = 5, width=8)
g1
dev.off()

#Depiction of Imputation Run results
g1<-ggplot()+
 geom_rect(data=data.frame(xmin=100000/2000,
 xmax=139999/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=160001/2000,
 xmax=200000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=140000/2000,

149

 xmax=160000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue', alpha=.5, inherit.aes = F)+
 geom_line(data=DF.plot, aes(x=Time, y=PPG))
g1

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Graphic_MS.png'), res=300, units='in', height = 5, width=8)
g1
dev.off()

#Just the imputed section:
g1<-ggplot()+
 geom_rect(data=data.frame(xmin=140000/2000,
 xmax=160000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue', alpha=.5, inherit.aes = F)+
 geom_line(data=DF.plot[140000:160000,], aes(x=Time, y=PPG))
g1

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Cut_out.png'), res=300, units='in', height = 5, width=8)
g1
dev.off()

IBI<-iter.IBI(dat, ds=2000, iter.length = 50)
max(IBI$Time)-min(IBI$Time)

time.pred<-seq(0, 297.75, length.out=298*4)

dat<-list(N1=length(IBI$IBI),
 N2=length(time.pred),
 Xp=time.pred,
 X=IBI$Time,
 Y=IBI$IBI
)

pars.to.monitor<-c('ULF','LF', 'HF', 'Ypred', paste0('a',1:4), paste0('r',1:7))

fit.stan<-stan(
 file='/home/mbarsted/Dropbox/Dissertation/R_Ch1-3/Stan_code/IBI_Data_Interpolation.stan',
 data = dat,
 warmup = 1000,
 iter = 1500,
 refresh=5,
 chains = 6,
 pars = pars.to.monitor,
 control = list(adapt_delta = .8,
 max_treedepth = 10)
)

posterior<-extract(fit.stan, pars=pars.to.monitor[-4])
posterior<-as.matrix(fit.stan)

mcmc_areas(posterior, pars = pars.to.monitor[1:3])
summary(fit.stan, pars=pars.to.monitor[-4])

y_pred<-extract(fit.stan, 'Ypred')
time.new<-(1:1192)/4

plot(time.new, colMeans(y_pred$Ypred))
lines(IBI2$Time, IBI2$IBI, col='red')

DF.temp<-data.frame(Time=time.new,
 IBI=colMeans(y_pred$Ypred))

150

#Depiction of Imputation Run results
setwd('/home/mbarsted/Dropbox/Dissertation/IBI_pilot')
dat<-read.table('tap_lap2.txt', header=F, sep='\t', skip=11)
dat<-dat[,-4]
dat<-dat[1:300000, 1]

DF.plot<-data.frame(Time = (1:300000)/2000,
 PPG = dat)

g1<-ggplot()+
 geom_rect(data=data.frame(xmin=100000/2000,
 xmax=139999/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=160001/2000,
 xmax=200000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='green',
 alpha=.5)+
 geom_rect(data=data.frame(xmin=140000/2000,
 xmax=160000/2000,
 ymin=-Inf,
 ymax=Inf),
 aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
 fill='blue', alpha=.5, inherit.aes = F)+
 geom_line(data=DF.plot, aes(x=Time, y=PPG))

png(paste0('/home/mbarsted/Dropbox/Dissertation/CH1-3_Graphics',
 '/Graphic_MS.png'), res=300, units='in', height = 5, width=8)
g1
dev.off()

Appendix C.6: Code used to generate figure 3.12

#Initial Exploratory Analyses for RSA Data:
RSA.wide<-dat.main[c('File',
 colnames(dat.main)[grep('RSA15', colnames(dat.main))])]

png(paste0(EDA.folder, '/RSA_pairs_panels.png'), units = 'in',
 height = 8, width = 8, res = 300)
psych::pairs.panels(RSA.wide[colnames(RSA.wide)!='File'])
dev.off()

#RSA by task
df.m<-reshape2::melt(RSA.wide[,2:7])
df.m$variable<-as.character(df.m$variable)

#Recoding variable names to align with the task names
df.m$variable[df.m$variable=='RSA15_Video1']<-'Video 1'
df.m$variable[df.m$variable=='RSA15_Video2']<-'Video 2'
df.m$variable[df.m$variable=='RSA15_Video3']<-'Video 3'
df.m$variable[df.m$variable=='RSA15_Clown']<-'Clown'
df.m$variable[df.m$variable=='RSA15_Kids']<-'Kids'
df.m$variable[df.m$variable=='RSA15_Intro']<-'Introduction'

g1<-ggplot(data = df.m, aes(y = value, x = variable, fill=variable)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = value, color = variable),
 position = position_jitter(width = .15),
 size = .5, alpha = 0.8) +

151

 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 5.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('RSA')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Distribution of Respiratory Sinus Arrhythmia as a Function of Task')

png(paste0(EDA.folder, '/RSA_raincloud.png'), units = 'in',
 height = 8, width = 8, res = 300)
g1
dev.off()

Appendix C.7: Code used to generate figure 3.13

#Initial Exploratory Analyses for HP Data:
HP.wide<-dat.main[c('File',
 colnames(dat.main)[grep('HP', colnames(dat.main))])]

png(paste0(EDA.folder, '/HP_pairs_panels.png'), units = 'in',
 height = 8, width = 8, res = 300)
psych::pairs.panels(HP.wide[colnames(HP.wide)!='File'])
dev.off()

#HP by task
df.m<-reshape2::melt(HP.wide[,2:7])
df.m$variable<-as.character(df.m$variable)

#Recoding variable names to align with the task names
df.m$variable[df.m$variable=='HP_Video1']<-'Video 1'
df.m$variable[df.m$variable=='HP_Video2']<-'Video 2'
df.m$variable[df.m$variable=='HP_Video3']<-'Video 3'
df.m$variable[df.m$variable=='HP_Clown']<-'Clown'
df.m$variable[df.m$variable=='HP_Kids']<-'Kids'
df.m$variable[df.m$variable=='HP_Intro']<-'Introduction'

g1<-ggplot(data = df.m, aes(y = value, x = variable, fill=variable)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = value, color = variable),
 position = position_jitter(width = .15),
 size = .5, alpha = 0.8) +
 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 5.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('HP')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Distribution of Heart Period as a Function of Task')

png(paste0(EDA.folder, '/HP_raincloud.png'), units = 'in',
 height = 8, width = 8, res = 300)
g1
dev.off()

Appendix C.8: Code used to generate figure 3.14

#Initial Exploratory Analyses for RMSSD Data:
RMSSD.wide<-dat.main[c('File',

152

 colnames(dat.main)[grep('RMSSD', colnames(dat.main))])]

png(paste0(EDA.folder, '/RMSSD_pairs_panels.png'), units = 'in',
 height = 8, width = 8, res = 300)
psych::pairs.panels(RMSSD.wide[colnames(RMSSD.wide)!='File'])
dev.off()

#RMSSD by task
df.m<-reshape2::melt(RMSSD.wide[,2:7])
df.m$variable<-as.character(df.m$variable)

#Recoding variable names to align with the task names
df.m$variable[df.m$variable=='RMSSD_Video1']<-'Video 1'
df.m$variable[df.m$variable=='RMSSD_Video2']<-'Video 2'
df.m$variable[df.m$variable=='RMSSD_Video3']<-'Video 3'
df.m$variable[df.m$variable=='RMSSD_Clown']<-'Clown'
df.m$variable[df.m$variable=='RMSSD_Kids']<-'Kids'
df.m$variable[df.m$variable=='RMSSD_Intro']<-'Introduction'

g1<-ggplot(data = df.m, aes(y = value, x = variable, fill=variable)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = value, color = variable),
 position = position_jitter(width = .15),
 size = .5, alpha = 0.8) +
 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 5.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('RMSSD')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Distribution of Heart Period as a Function of Task')

png(paste0(EDA.folder, '/RMSSD_raincloud.png'), units = 'in',
 height = 8, width = 8, res = 300)
g1
dev.off()

Appendix C.9: Code used to generate figure 3.15

#Getting a descriptive plot for POS variables
df.m<-reshape2::melt(POS.HP[,21:26])
df.m$variable<-as.character(df.m$variable)
df.m$variable[df.m$variable=='Const.prop']<-'Constructive-Exploratory'
df.m$variable[df.m$variable=='Func.prop']<-'Functional-Dramatic'
df.m$variable[df.m$variable=='Grp.prop']<-'Group Play'
df.m$variable[df.m$variable=='Par.prop']<-'Parallel Play'
df.m$variable[df.m$variable=='Ret.prop']<-'Reticence'
df.m$variable[df.m$variable=='Sol.prop']<-'Solitary Composite'

g1<-ggplot(data = df.m, aes(y = value, x = variable, fill=variable)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = value, color = variable),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.8) +
 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 3.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('Proportion of 10-second Epochs')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Proportion of Observed Time Children were Engaged in Each Play Behavior')

153

png(paste0(EDA.folder, '/POS_raincloud.png'), units = 'in',
 height = 8, width = 8, res = 300)
g1
dev.off()

Appendix C.10: Code used to generate figure 4.1

dat.HR.Rhat_1<-dat.GP1[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'HR.Rhat.vec'
)]

#Getting GP1 prepped...
dat.HR.Rhat_1$GP_run<-rep('GP1 Replacement')
dat.HR.Rhat_1$impute.fac.vec<-as.character(dat.HR.Rhat_1$impute.fac.vec)
dat.HR.Rhat_1$impute.fac.vec[dat.HR.Rhat_1$impute.fac.vec==1]<-'1x Imputation Window Length'
dat.HR.Rhat_1$impute.fac.vec[dat.HR.Rhat_1$impute.fac.vec==2]<-'2x Imputation Window Length'
dat.HR.Rhat_1$impute.fac.vec[dat.HR.Rhat_1$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
dat.HR.Rhat_1$impute.fac.vec<-as.character(dat.HR.Rhat_1$impute.fac.vec)
dat.HR.Rhat_1$impute.Hz.vec<-as.character(dat.HR.Rhat_1$impute.Hz.vec)
dat.HR.Rhat_1$GP.Hz.vec<-factor(dat.HR.Rhat_1$GP.Hz.vec)

#===
======
#Bringing in GP2 Data...
dat.HR.Rhat_2<-dat.GP2[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'HR.Rhat.vec'
)]

#Getting GP2 prepped...
dat.HR.Rhat_2$GP_run<-rep('GP2 Replacement')
dat.HR.Rhat_2$impute.fac.vec<-as.character(dat.HR.Rhat_2$impute.fac.vec)
dat.HR.Rhat_2$impute.fac.vec[dat.HR.Rhat_2$impute.fac.vec==1]<-'1x Imputation Window Length'
dat.HR.Rhat_2$impute.fac.vec[dat.HR.Rhat_2$impute.fac.vec==2]<-'2x Imputation Window Length'
dat.HR.Rhat_2$impute.fac.vec[dat.HR.Rhat_2$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
dat.HR.Rhat_2$impute.fac.vec<-as.character(dat.HR.Rhat_2$impute.fac.vec)
dat.HR.Rhat_2$impute.Hz.vec<-as.character(dat.HR.Rhat_2$impute.Hz.vec)
dat.HR.Rhat_2$GP.Hz.vec<-factor(dat.HR.Rhat_2$GP.Hz.vec)
#===
======
dat.HR.Rhat_3<-dat.GP3[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'HR.Rhat.vec'
)]

#Getting GP3 prepped...
dat.HR.Rhat_3$GP_run<-rep('GP3 Replacement')
dat.HR.Rhat_3$impute.fac.vec<-as.character(dat.HR.Rhat_3$impute.fac.vec)
dat.HR.Rhat_3$impute.fac.vec[dat.HR.Rhat_3$impute.fac.vec==1]<-'1x Imputation Window Length'
dat.HR.Rhat_3$impute.fac.vec[dat.HR.Rhat_3$impute.fac.vec==2]<-'2x Imputation Window Length'
dat.HR.Rhat_3$impute.fac.vec[dat.HR.Rhat_3$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
dat.HR.Rhat_3$impute.fac.vec<-as.character(dat.HR.Rhat_3$impute.fac.vec)
dat.HR.Rhat_3$impute.Hz.vec<-as.character(dat.HR.Rhat_3$impute.Hz.vec)
dat.HR.Rhat_3$GP.Hz.vec<-factor(dat.HR.Rhat_3$GP.Hz.vec)

df.m<-rbind(dat.HR.Rhat_1,

154

 dat.HR.Rhat_2,
 dat.HR.Rhat_3)

g125<-ggplot(data = df.m[df.m$impute.Hz.vec=='125',], aes(y = HR.Rhat.vec, x = GP_run)) +
 geom_point(data = df.m[df.m$impute.Hz.vec=='125',],
 aes(x = GP_run, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$impute.Hz.vec=='125',],
 aes(x = GP_run, y = HR.Rhat.vec, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 coord_cartesian(ylim = c(0,625))+
 geom_hline(yintercept = 1.1, color='red', lty='dashed')+
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name = 'GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('Model Run Time (mins)')+
 guides(color=FALSE)+
 ggtitle('Distributions of Heart Rate Parameter R-hat Values as a
 Function of Model and Modeling Conditions (125 Hz)')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

#looks like a GP sample rate of 12 Hz with a factor of 2 window on either side is best...
#This may be unique the the GP 1 model specification...
#Will need to investigate more
g250<-ggplot(data = df.m[df.m$impute.Hz.vec=='250',], aes(y = HR.Rhat.vec, x = GP_run)) +
 geom_point(data = df.m[df.m$impute.Hz.vec=='250',],
 aes(x = GP_run, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$impute.Hz.vec=='250',],
 aes(x = GP_run, y = HR.Rhat.vec, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='250',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 coord_cartesian(ylim = c(0,625))+
 geom_hline(yintercept = 1.1, color='red', lty='dashed')+
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name = 'GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('Model Run Time (mins)')+
 guides(color=FALSE)+
 ggtitle('Distributions of Heart Rate Parameter R-hat Values as a
 Function of Model and Modeling Conditions (250 Hz)')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

png(paste0(final.graphics, '/Model_HR_Rhat.png'),
 res=600,
 units = 'in',
 width = 11,
 height = 14)

155

cowplot::plot_grid(g125, g250, nrow = 2)
dev.off()

Appendix C.11: Code used to generate figure 4.2

dat.runtime_1<-dat.GP1[c('impute.fac.vec',
 'impute.Hz.vec',
 'impute.tot',
 'GP.Hz.vec',
 'runtime'
)]

#Getting GP1 prepped...
dat.runtime_1$GP_run<-rep('GP1 Replacement')
dat.runtime_1$impute.fac.vec<-as.character(dat.runtime_1$impute.fac.vec)
dat.runtime_1$impute.fac.vec[dat.runtime_1$impute.fac.vec==1]<-'1x Imputation Window Length'
dat.runtime_1$impute.fac.vec[dat.runtime_1$impute.fac.vec==2]<-'2x Imputation Window Length'
dat.runtime_1$impute.fac.vec[dat.runtime_1$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
dat.runtime_1$impute.fac.vec<-as.character(dat.runtime_1$impute.fac.vec)
dat.runtime_1$impute.Hz.vec<-as.character(dat.runtime_1$impute.Hz.vec)
dat.runtime_1$GP.Hz.vec<-factor(dat.runtime_1$GP.Hz.vec)

#===
======
#Bringing in GP2 Data...
dat.runtime_2<-dat.GP2[c('impute.fac.vec',
 'impute.Hz.vec',
 'impute.tot',
 'GP.Hz.vec',
 'runtime'
)]

#Getting GP2 prepped...
dat.runtime_2$GP_run<-rep('GP2 Replacement')
dat.runtime_2$impute.fac.vec<-as.character(dat.runtime_2$impute.fac.vec)
dat.runtime_2$impute.fac.vec[dat.runtime_2$impute.fac.vec==1]<-'1x Imputation Window Length'
dat.runtime_2$impute.fac.vec[dat.runtime_2$impute.fac.vec==2]<-'2x Imputation Window Length'
dat.runtime_2$impute.fac.vec[dat.runtime_2$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
dat.runtime_2$impute.fac.vec<-as.character(dat.runtime_2$impute.fac.vec)
dat.runtime_2$impute.Hz.vec<-as.character(dat.runtime_2$impute.Hz.vec)
dat.runtime_2$GP.Hz.vec<-factor(dat.runtime_2$GP.Hz.vec)
#===
======
dat.runtime_3<-dat.GP3[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'impute.tot',
 'runtime'
)]

#Getting GP3 prepped...
dat.runtime_3$GP_run<-rep('GP3 Replacement')
dat.runtime_3$impute.fac.vec<-as.character(dat.runtime_3$impute.fac.vec)
dat.runtime_3$impute.fac.vec[dat.runtime_3$impute.fac.vec==1]<-'1x Imputation Window Length'
dat.runtime_3$impute.fac.vec[dat.runtime_3$impute.fac.vec==2]<-'2x Imputation Window Length'
dat.runtime_3$impute.fac.vec[dat.runtime_3$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
dat.runtime_3$impute.fac.vec<-as.character(dat.runtime_3$impute.fac.vec)
dat.runtime_3$impute.Hz.vec<-as.character(dat.runtime_3$impute.Hz.vec)
dat.runtime_3$GP.Hz.vec<-factor(dat.runtime_3$GP.Hz.vec)

df.m<-rbind(dat.runtime_1,
 dat.runtime_2,

156

 dat.runtime_3)

#--------------------------------
#Making standard boxplot for run time (similar to others in MS)
g125<-ggplot(data = df.m[df.m$impute.Hz.vec=='125',], aes(y = runtime, x = GP_run)) +
 geom_point(data = df.m[df.m$impute.Hz.vec=='125',],
 aes(x = GP_run, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$impute.Hz.vec=='125',],
 aes(x = GP_run, y = runtime, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 scale_color_brewer(palette = "Dark2", name= 'GP Model Hz') +
 scale_fill_brewer(palette = "Dark2", name='GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('Model Run Time (mins)')+
 coord_cartesian(ylim = c(0, 810))+
 guides(color=FALSE)+
 ggtitle('Distributions of Total Model Run Time as a Function of Model and Modeling Conditions
(125 Hz)')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

#looks like a GP sample rate of 12 Hz with a factor of 2 window on either side is best...
#This may be unique the the GP 1 model specification...
#Will need to investigate more
g250<-ggplot(data = df.m[df.m$impute.Hz.vec=='250',], aes(y = runtime, x = GP_run)) +
 geom_point(data = df.m[df.m$impute.Hz.vec=='250',],
 aes(x = GP_run, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$impute.Hz.vec=='250',],
 aes(x = GP_run, y = runtime, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='250',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 scale_color_brewer(palette = "Dark2", name= 'GP Model Hz') +
 scale_fill_brewer(palette = "Dark2", name='GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('Model Run Time (mins)')+
 coord_cartesian(ylim = c(0, 810))+
 guides(color=FALSE)+
 ggtitle('Distributions of Total Model Run Time as a Function of Model and Modeling Conditions
(250 Hz)')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

png(paste0(final.graphics, '/Model_runtime.png'),
 res=600,
 units = 'in',
 width = 11,
 height = 14)
cowplot::plot_grid(g125, g250, nrow = 2)
dev.off()

157

Appendix C.12: Code used to generate figure 4.3

df.m$impute.Hz.vec[df.m$impute.Hz.vec=='125']<-'125 Hz'
df.m$impute.Hz.vec[df.m$impute.Hz.vec=='250']<-'250 Hz'

png(paste0(final.graphics, '/Run_time_facets.png'),
 res=600,
 units = 'in',
 width = 11,
 height = 8)
ggplot()+
 geom_point(data=df.m, aes(x=impute.tot, y=runtime, color = GP.Hz.vec))+
 stat_smooth(data = df.m, aes(x=impute.tot, y=runtime, color = GP.Hz.vec), method = 'loess',
se=F)+
 coord_cartesian(ylim=c(0, 810))+
 facet_wrap(.~impute.Hz.vec*impute.fac.vec*GP_run, nrow=3, ncol=6)+
 ggtitle('Model Run Time as a Function of Total Time Imputed')+
 scale_color_brewer(palette = "Dark2", name= 'GP Model Hz') +
 theme_bw()+
 xlab('Total Time Targeted for Imputation (seconds)')+
 ylab('Model Run Time (mins)')+
 theme(strip.text.x = element_text(size=7.5))+
 theme(strip.background.x = element_rect(linetype = 'blank'))
dev.off()

Appendix C.13: Code used to generate figure 4.4

GP1.data.folder<-'C:/Users/Mbars/Dropbox/Dissertation/Chapter 4/Sim_data/Output/Final_Data'

dat.GP1<-read.csv(paste0(GP1.data.folder, '/Final_GP1_40sims.csv'), stringsAsFactors = F)
dat.GP1$bias_rmssd15<-dat.GP1$IBI.GP.rmssd.15-dat.GP1$IBI.rmssd.15
dat.rmssd15_1<-dat.GP1[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'IBI.rmssd.15',
 'IBI.HD.rmssd.15',
 'IBI.MR.rmssd.15',
 'IBI.GP.rmssd.15'
)]

dat.rmssd15_1$HD.bias<-dat.rmssd15_1$IBI.HD.rmssd.15-dat.rmssd15_1$IBI.rmssd.15
dat.rmssd15_1$MR.bias<-dat.rmssd15_1$IBI.MR.rmssd.15-dat.rmssd15_1$IBI.rmssd.15
dat.rmssd15_1$GP.bias<-dat.rmssd15_1$IBI.GP.rmssd.15-dat.rmssd15_1$IBI.rmssd.15

#Getting GP1 prepped...
df.m1<-reshape2::melt(dat.rmssd15_1[,c(1:3, 8:10)], id.var=c('impute.fac.vec', 'GP.Hz.vec',
'impute.Hz.vec'))
df.m1$variable<-as.character(df.m1$variable)
df.m1$variable[df.m1$variable=='HD.bias']<-'Hot Deck Replacement'
df.m1$variable[df.m1$variable=='MR.bias']<-'Mean Replacement'
df.m1$variable[df.m1$variable=='GP.bias']<-'GP1 Replacement'

df.m1$impute.fac.vec<-as.character(df.m1$impute.fac.vec)
df.m1$impute.fac.vec[df.m1$impute.fac.vec==1]<-'1x Imputation Window Length'
df.m1$impute.fac.vec[df.m1$impute.fac.vec==2]<-'2x Imputation Window Length'
df.m1$impute.fac.vec[df.m1$impute.fac.vec==3]<-'3x Imputation Window Length'

#Cleaning up values
df.m1$impute.fac.vec<-as.character(df.m1$impute.fac.vec)
df.m1$impute.Hz.vec<-as.character(df.m1$impute.Hz.vec)

158

df.m1$GP.Hz.vec<-factor(df.m1$GP.Hz.vec)

#===
======
#Bringing in GP2 Data...
GP2.data.folder<-'C:/Users/Mbars/Dropbox/Dissertation/Chapter 4/Sim_data_2_b/Output/Final_Data'

dat.GP2<-read.csv(paste0(GP2.data.folder, '/Final_GP2_40sims.csv'), stringsAsFactors = F)
dat.GP2$bias_rmssd15<-dat.GP2$IBI.GP.rmssd.15-dat.GP2$IBI.rmssd.15
dat.rmssd15_2<-dat.GP2[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'IBI.rmssd.15',
 'IBI.HD.rmssd.15',
 'IBI.MR.rmssd.15',
 'IBI.GP.rmssd.15'
)]

dat.rmssd15_2$HD.bias<-dat.rmssd15_2$IBI.HD.rmssd.15-dat.rmssd15_2$IBI.rmssd.15
dat.rmssd15_2$MR.bias<-dat.rmssd15_2$IBI.MR.rmssd.15-dat.rmssd15_2$IBI.rmssd.15
dat.rmssd15_2$GP.bias<-dat.rmssd15_2$IBI.GP.rmssd.15-dat.rmssd15_2$IBI.rmssd.15

#Getting GP1 prepped...
df.m2<-reshape2::melt(dat.rmssd15_2[,c(1:3, 8:10)], id.var=c('impute.fac.vec', 'GP.Hz.vec',
'impute.Hz.vec'))
df.m2$variable<-as.character(df.m2$variable)
df.m2$variable[df.m2$variable=='HD.bias']<-'Hot Deck Replacement'
df.m2$variable[df.m2$variable=='MR.bias']<-'Mean Replacement'
df.m2$variable[df.m2$variable=='GP.bias']<-'GP2 Replacement'

df.m2$impute.fac.vec<-as.character(df.m2$impute.fac.vec)
df.m2$impute.fac.vec[df.m2$impute.fac.vec==1]<-'1x Imputation Window Length'
df.m2$impute.fac.vec[df.m2$impute.fac.vec==2]<-'2x Imputation Window Length'
df.m2$impute.fac.vec[df.m2$impute.fac.vec==3]<-'3x Imputation Window Length'

#===
======
GP3.data.folder<-'C:/Users/Mbars/Dropbox/Dissertation/Chapter 4/Sim_data_3_b/Output/Final_Data'

dat.GP3<-read.csv(paste0(GP3.data.folder, '/Final_GP3_40sims.csv'), stringsAsFactors = F)
dat.GP3$bias_rmssd15<-dat.GP3$IBI.GP.rmssd.15-dat.GP3$IBI.rmssd.15
dat.rmssd15_3<-dat.GP3[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'IBI.rmssd.15',
 'IBI.HD.rmssd.15',
 'IBI.MR.rmssd.15',
 'IBI.GP.rmssd.15'
)]

dat.rmssd15_3$HD.bias<-dat.rmssd15_3$IBI.HD.rmssd.15-dat.rmssd15_3$IBI.rmssd.15
dat.rmssd15_3$MR.bias<-dat.rmssd15_3$IBI.MR.rmssd.15-dat.rmssd15_3$IBI.rmssd.15
dat.rmssd15_3$GP.bias<-dat.rmssd15_3$IBI.GP.rmssd.15-dat.rmssd15_3$IBI.rmssd.15

#Getting GP1 prepped...
df.m3<-reshape2::melt(dat.rmssd15_3[,c(1:3, 8:10)], id.var=c('impute.fac.vec', 'GP.Hz.vec',
'impute.Hz.vec'))
df.m3$variable<-as.character(df.m3$variable)
df.m3$variable[df.m3$variable=='HD.bias']<-'Hot Deck Replacement'
df.m3$variable[df.m3$variable=='MR.bias']<-'Mean Replacement'
df.m3$variable[df.m3$variable=='GP.bias']<-'GP3 Replacement'

df.m3$impute.fac.vec<-as.character(df.m3$impute.fac.vec)
df.m3$impute.fac.vec[df.m3$impute.fac.vec==1]<-'1x Imputation Window Length'
df.m3$impute.fac.vec[df.m3$impute.fac.vec==2]<-'2x Imputation Window Length'
df.m3$impute.fac.vec[df.m3$impute.fac.vec==3]<-'3x Imputation Window Length'

df.m<-rbind(df.m1, df.m2, df.m3)

159

g125<-ggplot(data = df.m[df.m$impute.Hz.vec=='125',], aes(y = value, x = variable)) +
 #geom_point(data = df.m[df.m$variable == 'GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, color = GP.Hz.vec),
 # position = position_jitter(width = .15),
 # size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$variable == 'GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP2 Replacement' & df.m$impute.Hz.vec=='125',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP3 Replacement' & df.m$impute.Hz.vec=='125',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 geom_boxplot(data = df.m[df.m$variable != 'GP1 Replacement' &
 df.m$variable != 'GP2 Replacement' &
 df.m$variable != 'GP3 Replacement' &
 df.m$impute.Hz.vec=='125',],
 aes(x = variable, y = value, color = variable),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #expand_limits(x = 4.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name='GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('RMSSD Deviation (125 Hz)')+
 guides(color=FALSE)+
 ggtitle('Gaussian Process RMSSD Bias in Different Epoch Intervals: 125 Hz Signal Sampling
Rate')+
 coord_cartesian(ylim =c(-.05, .15))+
 geom_hline(yintercept = 0, color='red', lty='dashed')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

#looks like a GP sample rate of 12 Hz with a factor of 2 window on either side is best...
#This may be unique the the GP 1 model specification...
#Will need to investigate more
g250<-ggplot(data = df.m[df.m$impute.Hz.vec=='250',], aes(y = value, x = variable)) +
 #geom_point(data = df.m[df.m$variable == 'GP1 Replacement' & df.m$impute.Hz.vec=='250',],
 # aes(x = variable, color = GP.Hz.vec),
 # position = position_jitter(width = .15),
 # size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$variable == 'GP1 Replacement' & df.m$impute.Hz.vec=='250',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP2 Replacement' & df.m$impute.Hz.vec=='250',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP3 Replacement' & df.m$impute.Hz.vec=='250',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 geom_boxplot(data = df.m[df.m$variable != 'GP1 Replacement' &
 df.m$variable != 'GP2 Replacement' &
 df.m$variable != 'GP3 Replacement' &
 df.m$impute.Hz.vec=='250',],

160

 aes(x = variable, y = value, color = variable),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #expand_limits(x = 4.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name='GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('RMSSD Deviation (250 Hz)')+
 guides(color=FALSE)+
 ggtitle('Gaussian Process RMSSD Bias in Different Epoch Intervals: 250 Hz Signal Sampling
Rate')+
 coord_cartesian(ylim =c(-.05, .15))+
 geom_hline(yintercept = 0, color='red', lty='dashed')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

png(paste0(final.graphics, '/GP_Bias_overall_graphic.png'),
 res=600,
 units = 'in',
 width = 11,
 height = 14)
cowplot::plot_grid(g125, g250, nrow = 2)
dev.off()

Appendix C.14: Code used to generate figure 4.5

dat.rmssd15_1b<-dat.GP1[c('impute.fac.vec',
 'impute.Hz.vec',
 'HR.Rhat.vec',
 'GP.Hz.vec',
 'IBI.rmssd.15',
 'IBI.HD.rmssd.15',
 'IBI.MR.rmssd.15',
 'IBI.GP.rmssd.15'
)]

dat.rmssd15_1b$HD.bias<-dat.rmssd15_1b$IBI.HD.rmssd.15-dat.rmssd15_1b$IBI.rmssd.15
dat.rmssd15_1b$MR.bias<-dat.rmssd15_1b$IBI.MR.rmssd.15-dat.rmssd15_1b$IBI.rmssd.15
dat.rmssd15_1b$GP.bias<-dat.rmssd15_1b$IBI.GP.rmssd.15-dat.rmssd15_1b$IBI.rmssd.15

df.m1<-reshape2::melt(dat.rmssd15_1b[,c(1:4, 9:11)],
 id.var=c('impute.fac.vec', 'GP.Hz.vec', 'impute.Hz.vec', 'HR.Rhat.vec'))
df.m1$variable<-as.character(df.m1$variable)
df.m1$variable[df.m1$variable=='HD.bias']<-'Hot Deck Replacement'
df.m1$variable[df.m1$variable=='MR.bias']<-'Mean Replacement'
df.m1$variable[df.m1$variable=='GP.bias']<-'GP1 Replacement'

df.m1$impute.fac.vec<-as.character(df.m1$impute.fac.vec)
df.m1$impute.fac.vec[df.m1$impute.fac.vec==1]<-'1x Imputation Window Length'
df.m1$impute.fac.vec[df.m1$impute.fac.vec==2]<-'2x Imputation Window Length'
df.m1$impute.fac.vec[df.m1$impute.fac.vec==3]<-'3x Imputation Window Length'

dat.rmssd15_2b<-dat.GP2[c('impute.fac.vec',
 'impute.Hz.vec',
 'HR.Rhat.vec',
 'GP.Hz.vec',
 'IBI.rmssd.15',
 'IBI.HD.rmssd.15',
 'IBI.MR.rmssd.15',
 'IBI.GP.rmssd.15'
)]

dat.rmssd15_2b$HD.bias<-dat.rmssd15_2b$IBI.HD.rmssd.15-dat.rmssd15_2b$IBI.rmssd.15
dat.rmssd15_2b$MR.bias<-dat.rmssd15_2b$IBI.MR.rmssd.15-dat.rmssd15_2b$IBI.rmssd.15
dat.rmssd15_2b$GP.bias<-dat.rmssd15_2b$IBI.GP.rmssd.15-dat.rmssd15_2b$IBI.rmssd.15

161

df.m2<-reshape2::melt(dat.rmssd15_2b[,c(1:4, 9:11)],
 id.var=c('impute.fac.vec', 'GP.Hz.vec', 'impute.Hz.vec', 'HR.Rhat.vec'))
df.m2$variable<-as.character(df.m2$variable)
df.m2$variable[df.m2$variable=='HD.bias']<-'Hot Deck Replacement'
df.m2$variable[df.m2$variable=='MR.bias']<-'Mean Replacement'
df.m2$variable[df.m2$variable=='GP.bias']<-'GP2 Replacement'

df.m2$impute.fac.vec<-as.character(df.m2$impute.fac.vec)
df.m2$impute.fac.vec[df.m2$impute.fac.vec==1]<-'1x Imputation Window Length'
df.m2$impute.fac.vec[df.m2$impute.fac.vec==2]<-'2x Imputation Window Length'
df.m2$impute.fac.vec[df.m2$impute.fac.vec==3]<-'3x Imputation Window Length'

dat.rmssd15_3b<-dat.GP3[c('impute.fac.vec',
 'impute.Hz.vec',
 'HR.Rhat.vec',
 'GP.Hz.vec',
 'IBI.rmssd.15',
 'IBI.HD.rmssd.15',
 'IBI.MR.rmssd.15',
 'IBI.GP.rmssd.15'
)]

dat.rmssd15_3b$HD.bias<-dat.rmssd15_3b$IBI.HD.rmssd.15-dat.rmssd15_3b$IBI.rmssd.15
dat.rmssd15_3b$MR.bias<-dat.rmssd15_3b$IBI.MR.rmssd.15-dat.rmssd15_3b$IBI.rmssd.15
dat.rmssd15_3b$GP.bias<-dat.rmssd15_3b$IBI.GP.rmssd.15-dat.rmssd15_3b$IBI.rmssd.15

df.m3<-reshape2::melt(dat.rmssd15_3b[,c(1:4, 9:11)],
 id.var=c('impute.fac.vec', 'GP.Hz.vec', 'impute.Hz.vec', 'HR.Rhat.vec'))
df.m3$variable<-as.character(df.m3$variable)
df.m3$variable[df.m3$variable=='HD.bias']<-'Hot Deck Replacement'
df.m3$variable[df.m3$variable=='MR.bias']<-'Mean Replacement'
df.m3$variable[df.m3$variable=='GP.bias']<-'GP3 Replacement'

df.m3$impute.fac.vec<-as.character(df.m3$impute.fac.vec)
df.m3$impute.fac.vec[df.m3$impute.fac.vec==1]<-'1x Imputation Window Length'
df.m3$impute.fac.vec[df.m3$impute.fac.vec==2]<-'2x Imputation Window Length'
df.m3$impute.fac.vec[df.m3$impute.fac.vec==3]<-'3x Imputation Window Length'

df.m<-rbind(df.m1, df.m2, df.m3)

df.m$GP.Hz.vec<-as.factor(df.m$GP.Hz.vec)
#Getting Bias only among models that have converged
g125<-ggplot(data = df.m[df.m$impute.Hz.vec=='125' & df.m$HR.Rhat.vec<=1.1,], aes(y = value, x =
variable)) +
 #geom_point(data = df.m[df.m$variable == 'GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, color = GP.Hz.vec),
 # position = position_jitter(width = .15),
 # size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$variable == 'GP1 Replacement' &
 df.m$impute.Hz.vec=='125' & df.m$HR.Rhat.vec<=1.1,],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP2 Replacement' &
 df.m$impute.Hz.vec=='125' & df.m$HR.Rhat.vec<=1.1,],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP3 Replacement' &
 df.m$impute.Hz.vec=='125' & df.m$HR.Rhat.vec<=1.1,],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 geom_boxplot(data = df.m[df.m$variable != 'GP1 Replacement' &
 df.m$variable != 'GP2 Replacement' &

162

 df.m$variable != 'GP3 Replacement' &
 df.m$impute.Hz.vec=='125',],
 aes(x = variable, y = value, color = variable),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #expand_limits(x = 4.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name='GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('RMSSD Deviation (125 Hz)')+
 guides(color=FALSE)+
 ggtitle('Gaussian Process RMSSD Bias in Different Epoch Intervals:
 125 Hz Signal Sampling Rate (HR Parameter Convergence)')+
 coord_cartesian(ylim =c(-.05, .15))+
 geom_hline(yintercept = 0, color='red', lty='dashed')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

#looks like a GP sample rate of 12 Hz with a factor of 2 window on either side is best...
#This may be unique the the GP 1 model specification...
#Will need to investigate more
g250<-ggplot(data = df.m[df.m$impute.Hz.vec=='250' &
 df.m$HR.Rhat.vec<=1.1,], aes(y = value, x = variable)) +
 #geom_point(data = df.m[df.m$variable == 'GP1 Replacement' & df.m$impute.Hz.vec=='250',],
 # aes(x = variable, color = GP.Hz.vec),
 # position = position_jitter(width = .15),
 # size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m[df.m$variable == 'GP1 Replacement' &
 df.m$impute.Hz.vec=='250' & df.m$HR.Rhat.vec<=1.1,],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP2 Replacement' &
 df.m$impute.Hz.vec=='250' & df.m$HR.Rhat.vec<=1.1,],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 geom_boxplot(data = df.m[df.m$variable == 'GP3 Replacement' &
 df.m$impute.Hz.vec=='250' & df.m$HR.Rhat.vec<=1.1,],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m[df.m$variable!='GP1 Replacement' & df.m$impute.Hz.vec=='250',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 geom_boxplot(data = df.m[df.m$variable != 'GP1 Replacement' &
 df.m$variable != 'GP2 Replacement' &
 df.m$variable != 'GP3 Replacement' &
 df.m$impute.Hz.vec=='250',],
 aes(x = variable, y = value, color = variable),
 width = .5, guides = FALSE, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #expand_limits(x = 4.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name='GP Model Hz') +
 theme_bw() +
 xlab('')+ylab('RMSSD Deviation (250 Hz)')+
 guides(color=FALSE)+
 ggtitle('Gaussian Process RMSSD Bias in Different Epoch Intervals:
 250 Hz Signal Sampling Rate (HR Parameter Convergence)')+
 coord_cartesian(ylim =c(-.05, .15))+
 geom_hline(yintercept = 0, color='red', lty='dashed')+
 theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 facet_wrap(.~impute.fac.vec)

png(paste0(final.graphics, '/GP_Bias_overall_graphic_Rhat_conv.png'),
 res=600,
 units = 'in',
 width = 11,

163

 height = 14)
cowplot::plot_grid(g125, g250, nrow = 2)
dev.off()

Appendix C.15: Code used to generate figure 4.6

dat.p_edits<-dat.main[,31:36]
df.m<-reshape2::melt(dat.p_edits)
df.m$variable<-as.character(df.m$variable)

#Recoding variable names to align with the task names
df.m$variable[df.m$variable=='pEdits_Video1']<-'Video 1'
df.m$variable[df.m$variable=='pEdits_Video2']<-'Video 2'
df.m$variable[df.m$variable=='pEdits_Video3']<-'Video 3'
df.m$variable[df.m$variable=='pEdits_Clown']<-'Clown'
df.m$variable[df.m$variable=='pEdits_Kids']<-'Kids'
df.m$variable[df.m$variable=='pEdits_Intro']<-'Introduction'

g1<-ggplot(data = df.m, aes(y = value, x = variable, fill=variable)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = value, color = variable),
 position = position_jitter(width = .15),
 size = .5, alpha = 0.8) +
 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 5.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('Proportion of Edits')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Proportion of Edits as a Function of Task')

png(paste0(EDA.folder, '/Proportion of Edits by Task.png'), units = 'in',
 height = 8, width = 8, res = 300)
g1
dev.off()

Appendix C.16: Code used to generate figure 4.7

dat.intra<-read.csv(paste0(data.folder, '/Editing Assignments - CE_VizEdit_rel.csv'))

#I went back and forth as to whether I would out myself as Editor 1 in the end.
#I figured transparency is the way to go. So here it is in the code.
#I was Editor 1 - and I did not do that well going between programs :)
#This is what the kids call an Easter Egg I believe...

dat.intra$Editor_anon[dat.intra$Editor=='Matthew Barstead']<-'Editor 1'
dat.intra$Editor_anon[dat.intra$Editor=='Sophia Lamp']<-'Editor 2'

psych::describeBy(dat.intra, group='Editor')

df.m<-reshape2::melt(dat.intra[,6:7])
df.m$variable<-as.character(df.m$variable)

g1<-ggplot(data = dat.intra, aes(y = Diff, x = Editor_anon, fill=Editor_anon)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = Diff, color = Editor_anon),
 position = position_jitter(width = .15, seed = 123),
 size = 1, alpha = 0.8) +

164

 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 3.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 geom_hline(yintercept = .05, color = 'red', lty='dashed', alpha = .5)+
 geom_hline(yintercept = -.05, color = 'red', lty='dashed', alpha = .5)+
 geom_hline(yintercept = .10, color = 'blue', lty='dashed', alpha = .5)+
 geom_hline(yintercept = -.10, color = 'blue', lty='dashed', alpha = .5)+
 geom_hline(yintercept = 0, color = 'black', lty='dashed', alpha = .5)+
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('RSA Difference Scores')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Distributions of Differences in RSA scores Produced by VizEdit vs. Cardio Edit')

png(paste0(out.folder, '/Intra-Rater_CE_vs_VizEdit.png'),
 units = 'in',
 width = 8,
 height = 5,
 res=600)
g1
dev.off()

Appendix C.17: Code used to generate figure 4.8

dat.inter<-read.csv(paste0(data.folder, '/Editing Assignments - MB_Diss_rel.csv'),
stringsAsFactors = F)
RSA.wide2<-dat.inter[c('File',
 colnames(dat.inter)[grep('RSA15', colnames(dat.inter))])]
RSA.wide2$Editor<-rep('Editor 3')
RSA.wide$Editor[dat.main$Editor=='Matthew Barstead']<-'Editor 1'
RSA.wide$Editor[dat.main$Editor=='Sophia Lamp']<-'Editor 2'

RSA.wide.E1<-RSA.wide[RSA.wide$Editor=='Editor 1',]
E3.Files<-RSA.wide2$File
RSA.E1_E3<-data.frame(stringsAsFactors = F)
for(i in 1:length(E3.Files)){
 if(sum(RSA.wide.E1$File==E3.Files[i])==1){
 RSA.E1_E3<-rbind(RSA.E1_E3, RSA.wide[RSA.wide$File==E3.Files[i],])
 RSA.E1_E3<-rbind(RSA.E1_E3, RSA.wide2[RSA.wide2$File==E3.Files[i],])
 }
}

RSA.long.E1_E3<-reshape(RSA.E1_E3,
 idvar = c('File', 'Editor'),
 varying = colnames(RSA.E1_E3)[2:7],
 timevar = 'Task',
 times = c('Video1',
 'Clown',
 'Video2',
 'Kids',
 'Intro',
 'Video3'
),
 v.names = 'RSA',
 direction = 'long')

E1vE3.DF<-cbind(RSA.long.E1_E3$RSA[RSA.long.E1_E3$Editor=='Editor 1'],
 RSA.long.E1_E3$RSA[RSA.long.E1_E3$Editor=='Editor 3'])

#Difference Scores - Editor 1 vs. Editor 3
E1vE3_Diff<-E1vE3.DF[,1]-E1vE3.DF[,2]

#Getting the same difference Scores for Edior 2 vs. Editor 3
RSA.wide.E2<-RSA.wide[RSA.wide$Editor=='Editor 2',]
E3.Files<-RSA.wide2$File

165

RSA.E2_E3<-data.frame(stringsAsFactors = F)
for(i in 1:length(E3.Files)){
 if(sum(RSA.wide.E2$File==E3.Files[i])==1){
 RSA.E2_E3<-rbind(RSA.E2_E3, RSA.wide[RSA.wide$File==E3.Files[i],])
 RSA.E2_E3<-rbind(RSA.E2_E3, RSA.wide2[RSA.wide2$File==E3.Files[i],])
 }
}

RSA.long.E2_E3<-reshape(RSA.E2_E3,
 idvar = c('File', 'Editor'),
 varying = colnames(RSA.E2_E3)[2:7],
 timevar = 'Task',
 times = c('Video1',
 'Clown',
 'Video2',
 'Kids',
 'Intro',
 'Video3'
),
 v.names = 'RSA',
 direction = 'long')

E2vE3.DF<-cbind(RSA.long.E2_E3$RSA[RSA.long.E2_E3$Editor=='Editor 2'],
 RSA.long.E2_E3$RSA[RSA.long.E2_E3$Editor=='Editor 3'])

#Difference Scores - Editor 1 vs. Editor 3
E2vE3_Diff<-E2vE3.DF[,1]-E2vE3.DF[,2]

#Plotting Inter-Editor Comparisons
E1vE3.DF<-as.data.frame(E1vE3.DF)
colnames(E1vE3.DF)<-c('Primary_RSA', 'Secondary_RSA')
E1vE3.DF$Diff<-E1vE3_Diff
E1vE3.DF$Comparison<-rep('Editor 1 vs. Editor 3')

E2vE3.DF<-as.data.frame(E2vE3.DF)
colnames(E2vE3.DF)<-c('Primary_RSA', 'Secondary_RSA')
E2vE3.DF$Diff<-E2vE3_Diff
E2vE3.DF$Comparison<-rep('Editor 2 vs. Editor 3')

Editor.comp<-rbind(E1vE3.DF, E2vE3.DF)
Edit.comp.graph<-Editor.comp[Editor.comp$Diff>-.35,]
Edit.comp.graph<-Edit.comp.graph[!is.na(Edit.comp.graph$Comparison),]

g1<-ggplot(data = Edit.comp.graph, aes(y = Diff, x = Comparison, fill=Comparison)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = Diff, color = Comparison),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.8) +
 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 3.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 geom_hline(yintercept = .05, color = 'red', lty='dashed', alpha = .5)+
 geom_hline(yintercept = -.05, color = 'red', lty='dashed', alpha = .5)+
 geom_hline(yintercept = .10, color = 'blue', lty='dashed', alpha = .5)+
 geom_hline(yintercept = -.10, color = 'blue', lty='dashed', alpha = .5)+
 geom_hline(yintercept = 0, color = 'black', lty='dashed', alpha = .5)+
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('RSA Difference Scores')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('Distributions of RSA Difference Scores Between Editors Using IBI VizEdit')

png(paste0(out.folder, '/RSA_Inter_Editor_Comparison.png'), units = 'in',
 height = 5, width = 8, res = 300)
g1
dev.off()

166

Appendix C.18: Code used to generate figure 4.9 and 4.10 (Missing Data)

#RSA Missingness
png(paste0(out.folder, '/RSA_missing_summary.png'),
 units = 'in',
 width = 8,
 height = 5,
 res = 600)
VIM::aggr(RSA.wide[,2:7],
 labels = unlist(strsplit(names(RSA.wide[,2:7]), split = '_'))[c(2,4,6,8,10,12)],
 numbers=T,
 cex.axis =.95, oma = c(9,5,5,3))
title('Missing Data Summary for RSA Values Derived from 15-second Epochs')
dev.off()

#IBI VizEdit measures missingness.
png(paste0(out.folder, '/VizEdit_missing_summary.png'),
 units = 'in',
 width = 8,
 height = 5,
 res = 600)
VIM::aggr(HP.wide[,2:7],
 labels = unlist(strsplit(names(HP.wide[,2:7]), split = '_'))[c(2,4,6,8,10,12)],
 numbers=T,
 cex.axis =.95, oma = c(9,5,5,3))
title('Missing Data Summary for IBI VizEdit Task Values (RMSSD and HP)')
dev.off()

Appendix C.19: Code used to generate figure 5.1 - 5.3, 5.6, & 5.7 (these figures were
output as part of the re-sampling script - see Appendix D)

g1<-ggplot()+
 geom_line(data=PPG.DF.new, aes(x=Time, y = PPG), color = 'red', lty='dashed')+
 geom_line(data=PPG.impute.pred, aes(x=Time, y=PPG), color = 'black')+
 ggtitle(paste(dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

ggsave(filename = paste0(graphics.folder, paste('/',dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g1,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

167

Appendix C.20: Code used to generate figure 5.4

dat.HR.conv2<-dat.GP2[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'HR.Rhat.vec',
 'a1_conv',
 'a2_conv',
 'a3_conv',
 'r1_conv',
 'r2_conv',
 'r3_conv',
 'r4_conv',
 'r5_conv'
)]

df.m2.conv<-reshape2::melt(dat.HR.conv2[c(1:3, 5:12)],
 id.var=c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec'))
df.m2.conv$variable<-as.character(df.m2.conv$variable)
df.m2.conv$GP.Hz.vec<-as.factor(df.m2.conv$GP.Hz.vec)
df.m2.conv$impute.fac.vec<-as.character(df.m2.conv$impute.fac.vec)
df.m2.conv$impute.fac.vec[df.m2.conv$impute.fac.vec=="1"]<-'1x Imputation Window Length'
df.m2.conv$impute.fac.vec[df.m2.conv$impute.fac.vec=="2"]<-'2x Imputation Window Length'
df.m2.conv$impute.fac.vec[df.m2.conv$impute.fac.vec=="3"]<-'3x Imputation Window Length'

g125<-ggplot(data = df.m2.conv[df.m2.conv$impute.Hz.vec=='125',], aes(y = value, x = variable)) +
 geom_point(data = df.m2.conv[df.m2.conv$impute.Hz.vec=='125',],
 aes(x = variable, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m2.conv[df.m2.conv$impute.Hz.vec=='125',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m2.conv[df.m2.conv$variable!='GP1 Replacement' &
df.m2.conv$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 coord_cartesian(ylim = c(0,10))+
 #geom_hline(yintercept = 1.1, color='red', lty='dashed')+
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name = 'GP Model Hz') +
 theme_bw() +
 xlab('Hyperparameter')+ylab('Divergence in Estimates from 2 Random Starts')+
 guides(color=FALSE)+
 ggtitle('Distributions of Divergence in Hyperparameter Estimates from 2 Random Starts (125
Hz)')+
 #theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 scale_x_discrete(labels = c('a1_conv' = expression(sigma[1]),
 'a2_conv' = expression(sigma[2]),
 'a3_conv' = expression(sigma[3]),
 'r1_conv' = expression(italic('l')[1]),
 'r2_conv' = expression(italic('l')[2]),
 'r3_conv' = expression(italic('l')[3]),
 'r4_conv' = expression(italic('l')[4]),
 'r5_conv' = expression(italic('l')[5])))+
 facet_wrap(.~impute.fac.vec)

#looks like a GP sample rate of 12 Hz with a factor of 2 window on either side is best...
#This may be unique the the GP 1 model specification...
#Will need to investigate more

168

g250<-ggplot(data = df.m2.conv[df.m2.conv$impute.Hz.vec=='250',], aes(y = value, x = variable)) +
 geom_point(data = df.m2.conv[df.m2.conv$impute.Hz.vec=='250',],
 aes(x = variable, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m2.conv[df.m2.conv$impute.Hz.vec=='250',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .5, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m2.conv[df.m2.conv$variable!='GP1 Replacement' &
df.m2.conv$impute.Hz.vec=='250',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 coord_cartesian(ylim = c(0,10))+
 #geom_hline(yintercept = 1.1, color='red', lty='dashed')+
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name = 'GP Model Hz') +
 theme_bw() +
 xlab('Hyperparameter')+ylab('Divergence in Estimates from 2 Random Starts')+
 guides(color=FALSE)+
 ggtitle('Distributions of Divergence in Hyperparameter Estimates from 2 Random Starts (250
Hz)')+
 #theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 scale_x_discrete(labels = c('a1_conv' = expression(sigma[1]),
 'a2_conv' = expression(sigma[2]),
 'a3_conv' = expression(sigma[3]),
 'r1_conv' = expression(italic('l')[1]),
 'r2_conv' = expression(italic('l')[2]),
 'r3_conv' = expression(italic('l')[3]),
 'r4_conv' = expression(italic('l')[4]),
 'r5_conv' = expression(italic('l')[5])))+
 facet_wrap(.~impute.fac.vec)

png(paste0(final.graphics, '/GP2_Hyperparameters.png'),
 res = 600,
 units = 'in',
 height = 10,
 width = 8)
cowplot::plot_grid(g125, g250, nrow = 2)
dev.off()

Appendix C.21: Code used to generate figure 5.5

dat.HR.conv3<-dat.GP3[c('impute.fac.vec',
 'impute.Hz.vec',
 'GP.Hz.vec',
 'HR.Rhat.vec',
 'a1_conv',
 'a2_conv',
 'a3_conv',
 'a4_conv',
 'r1_conv',
 'r2_conv',
 'r3_conv',
 'r4_conv',
 'r5_conv',
 'r6_conv',
 'r7_conv'
)]

df.m3.conv<-reshape2::melt(dat.HR.conv3[c(1:3, 5:15)],
 id.var=c('impute.fac.vec',

169

 'impute.Hz.vec',
 'GP.Hz.vec'))
df.m3.conv$variable<-as.character(df.m3.conv$variable)
df.m3.conv$GP.Hz.vec<-as.factor(df.m3.conv$GP.Hz.vec)
df.m3.conv$impute.fac.vec<-as.character(df.m3.conv$impute.fac.vec)
df.m3.conv$impute.fac.vec[df.m3.conv$impute.fac.vec=="1"]<-'1x Imputation Window Length'
df.m3.conv$impute.fac.vec[df.m3.conv$impute.fac.vec=="2"]<-'2x Imputation Window Length'
df.m3.conv$impute.fac.vec[df.m3.conv$impute.fac.vec=="3"]<-'3x Imputation Window Length'

g125<-ggplot(data = df.m3.conv[df.m3.conv$impute.Hz.vec=='125',], aes(y = value, x = variable)) +
 geom_point(data = df.m3.conv[df.m3.conv$impute.Hz.vec=='125',],
 aes(x = variable, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m3.conv[df.m3.conv$impute.Hz.vec=='125',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .75, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m3.conv[df.m3.conv$variable!='GP1 Replacement' &
df.m3.conv$impute.Hz.vec=='125',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +
 #expand_limits(x = 4.25) +
 coord_cartesian(ylim = c(0,10))+
 #geom_hline(yintercept = 1.1, color='red', lty='dashed')+
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name = 'GP Model Hz') +
 theme_bw() +
 xlab('Hyperparameter')+ylab('Divergence in Estimates from 2 Random Starts')+
 guides(color=FALSE)+
 ggtitle('Distributions of Divergence in Hyperparameter Estimates from 2 Random Starts (125
Hz)')+
 #theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 scale_x_discrete(labels = c('a1_conv' = expression(sigma[1]),
 'a2_conv' = expression(sigma[2]),
 'a3_conv' = expression(sigma[3]),
 'a4_conv' = expression(sigma[3]),
 'r1_conv' = expression(italic('l')[1]),
 'r2_conv' = expression(italic('l')[2]),
 'r3_conv' = expression(italic('l')[3]),
 'r4_conv' = expression(italic('l')[4]),
 'r5_conv' = expression(italic('l')[5]),
 'r6_conv' = expression(italic('l')[6]),
 'r7_conv' = expression(italic('l')[7])))+
 facet_wrap(.~impute.fac.vec)

#looks like a GP sample rate of 12 Hz with a factor of 2 window on either side is best...
#This may be unique the the GP 1 model specification...
#Will need to investigate more
g250<-ggplot(data = df.m3.conv[df.m3.conv$impute.Hz.vec=='250',], aes(y = value, x = variable)) +
 geom_point(data = df.m3.conv[df.m3.conv$impute.Hz.vec=='250',],
 aes(x = variable, color = GP.Hz.vec),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.5) +
 geom_boxplot(data = df.m3.conv[df.m3.conv$impute.Hz.vec=='250',],
 aes(x = variable, y = value, fill = GP.Hz.vec),
 width = .75, outlier.shape = NA, alpha = 0.5, inherit.aes = F) +
 #geom_point(data = df.m3.conv[df.m3.conv$variable!='GP1 Replacement' &
df.m3.conv$impute.Hz.vec=='250',],
 # aes(x = variable, y = value, color = variable),
 # position = position_jitter(width = .15),
 # size = 1,
 # alpha = 0.5,
 # inherit.aes = F,
 # guides = F) +

170

 #expand_limits(x = 4.25) +
 coord_cartesian(ylim = c(0,10))+
 #geom_hline(yintercept = 1.1, color='red', lty='dashed')+
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2", name = 'GP Model Hz') +
 theme_bw() +
 xlab('Hyperparameter')+ylab('Divergence in Estimates from 2 Random Starts')+
 guides(color=FALSE)+
 ggtitle('Distributions of Divergence in Hyperparameter Estimates from 2 Random Starts (250
Hz)')+
 #theme(axis.text.x = element_text(angle = 30, hjust = 1))+
 scale_x_discrete(labels = c('a1_conv' = expression(sigma[1]),
 'a2_conv' = expression(sigma[2]),
 'a3_conv' = expression(sigma[3]),
 'a4_conv' = expression(sigma[3]),
 'r1_conv' = expression(italic('l')[1]),
 'r2_conv' = expression(italic('l')[2]),
 'r3_conv' = expression(italic('l')[3]),
 'r4_conv' = expression(italic('l')[4]),
 'r5_conv' = expression(italic('l')[5]),
 'r6_conv' = expression(italic('l')[6]),
 'r7_conv' = expression(italic('l')[7])))+
 facet_wrap(.~impute.fac.vec)

png(paste0(final.graphics, '/GP3_Hyperparameters.png'),
 res = 600,
 units = 'in',
 height = 10,
 width = 10)
cowplot::plot_grid(g125, g250, nrow = 2)
dev.off()

Appendix C.22: Code used to generate figure 5.8

#Getting a distribution plot for the Cardio Edit scores & IBI VizEdit Scores
df.m<-reshape2::melt(dat.intra)
df.m$variable<-as.character(df.m$variable)
df.m$variable[df.m$variable=='VizEdit_RSA15']<-'VizEdit'
df.m$variable[df.m$variable=='CardioEdit_RSA15']<-'Cardio Edit'

g1<-ggplot(data = df.m[df.m$variable!='Diff',], aes(y = value, x = variable, fill=variable)) +
 geom_flat_violin(position = position_nudge(x = .2, y = 0), alpha = .8) +
 geom_point(aes(y = value, color = variable),
 position = position_jitter(width = .15),
 size = 1, alpha = 0.8) +
 geom_boxplot(width = .1, guides = FALSE, outlier.shape = NA, alpha = 0.5) +
 expand_limits(x = 3.25) +
 scale_color_brewer(palette = "Dark2") +
 scale_fill_brewer(palette = "Dark2") +
 theme_bw() +
 raincloud_theme+
 xlab('')+ylab('RSA')+
 guides(fill=FALSE, color=FALSE)+
 ggtitle('RSA Score Distributions Using Cardio Edit and IBI VizEdit')

png(paste0(EDA.folder, '/Cross-Program_RSA.png'), units = 'in',
 height = 8, width = 8, res = 300)
g1
dev.off()

Appendix C.23: Code used to generate figure 5.9

171

png(paste0(EDA.folder, '/Phyio Variables.png'),
 units = 'in',
 height = 8,
 width = 8,
 res = 600)
psych::pairs.panels(Long.dat)
dev.off()

172

Appendix D: Code for Re-Sampling Program

Appendix D.1 Re-sampling Code for Gaussian Process Model Imputation Model 1

#Ensuring random starts for two different threads on same computer...
set.seed(as.numeric(Sys.time()))

#Original Processing:

dat.time.orig<-read.csv('~/Dropbox/Dissertation/Chapter 4/Sim_data/Raw_coded.csv',
 stringsAsFactors = F)

#cleaning up extra rows
dat.time.orig<-dat.time.orig[-91:-nrow(dat.time.orig),]

#Taking only cases with at least 180 continuous seconds worth of data:
dat.time.orig<-dat.time.orig[dat.time.orig$Window_Length>=180,]

table(dat.time.orig$Population) #not bad - about 50/50
 #40 sections of adult data
 #39 sections of child data

#Converting "Adult" to "adult" and "Child" to "Child"
dat.time.orig$Population<-ifelse(dat.time.orig$Population=='Adult', 'adult', 'child')

wd<-'~/Dropbox/Dissertation/Chapter 4/Sim_data'

#Bringing in file information worksheet
file_info<-read.csv(paste0(wd, '/Physio_Tracking - Sheet1.csv'), stringsAsFactors = F)

#Converting ID to common structure:
file_info$ID<-substr(file_info$Video_1, start=1, stop=6)

#Task timing file
task.time<-read.table(paste0(wd, '/Timing_File_forVizEdit.txt'),
 header = T, sep = '\t')
colnames(task.time)[1]<-'ID'

#Creating a test case folder - will run five imputations under each condition on 5 different
files:
#All test files will be with adult files.
data.folder<-paste0(wd, '/Good_3min')

file.names<-list.files(data.folder)

#Getting appropriate timing values for sections of "good" data
DF.segment<-merge(dat.time.orig, task.time[,1:2], by='ID')

#Will not be able to use case 051_T2 as there appears to be a task/timing issue there (loses 1
child case)
DF.segment<-DF.segment[DF.segment$ID!="051_T2",]
DF.segment$Start.adj<-DF.segment$Start+DF.segment$Video
DF.segment$Stop.adj<-DF.segment$Stop+DF.segment$Video
DF.segment$time.min<-DF.segment$Start.adj+31
DF.segment$time.max<-DF.segment$Stop.adj-31

DF.segment<-merge(DF.segment, file_info[,c(1,14:17)], by='ID')

#Functions for identifying heart beats
#==
#Function 1 - Finding Peakings Using Specified bandwidth:
findpeaks <- function (x, m = 3){
 shape <- diff(sign(diff(x, na.pad = FALSE)))
 pks <- sapply(which(shape < 0), FUN = function(i){
 z <- i - m + 1
 z <- ifelse(z > 0, z, 1)

173

 w <- i + m + 1
 w <- ifelse(w < length(x), w, length(x))
 if(all(x[c(z : i, (i + 2) : w)] <= x[i + 1])) return(i + 1) else return(numeric(0))
 })
 pks <- unlist(pks)
 pks
}
#===
#Function 2 - Summing IBIs from Raw PPG file:
time.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], x[i]-x[i-1])
 }
 return(Z)
}
#==
#Function 2b - Summing Time from IBIs
IBI.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-sum(x[1:i])
 }
 return(Z)
}
#==
#Function 3 - Iterative function for getting IBIs
iter.IBI<-function(x, ds=2000){
 #browser()
 require(psych)
 s<-round(seq(round(ds/50), round(ds/2), length.out = 200))
 Z<-data.frame(rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)))
 for(i in 1:length(s)){
 IBI<-findpeaks(x, s[i])
 time<-time.sum(IBI)/ds
 Z[i,1]<-s[i]
 Z[i,2]<-sd(time)
 Z[i,3]<-max(time)-min(time)
 Z[i,4]<-rmssd(time)
 Z[i,5]<-mean(acf(time, lag.max = length(time)/20, plot = F)$acf)
 Z[i,6]<-s[i]/ds
 }
 colnames(Z)<-c('BW', 'SD', 'Range', 'RMSSD', 'AC', 'BW(s)')
 Z<-Z[order(Z$RMSSD, decreasing = F),]
 IBI.fin<-findpeaks(x, m=Z[1,1])-1
 IBI.fin<-IBI.fin/ds
 IBI.done<-time.sum(IBI.fin)
 IBI.comp<-list(IBI.done, Z)
 names(IBI.comp)<-c('IBI.done', 'Z')
 return(IBI.comp)
}
#==
#Function 4 - Obtaining Time Values for IBI
sum.rev<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], sum(x[1:(i-1)])+x[i])
 }
 return(Z)
}

#setting up models:
chains<-2

174

impute.min<-2
impute.max<-8
warmup<-c(2000)
n.iter<-c(2500)
Data.sample.Hz<-c(2000)
impute.sample.Hz<-c(125, 250)
GP.sample.Hz<-c(4, 8, 12)
impute.fac<-c(1,2,3)

library(ggplot2)
library(signal)
library(psych)
library(bayesplot)
library(MCMCvis)
library(rstan)
library(rstanarm)
library(astsa)
options(mc.cores=parallel::detectCores())
rstan_options(auto_write = TRUE)
#Run the complete simulation from here
#Basing this on 5 simulations each to start:
n.sims<-20

#Basic simulation vectors
ID.vec<-vector()
impute.ID<-vector()
pop.vec<-vector()
start.vec<-vector()
stop.vec<-vector()
CPU.vec<-vector()
Cores.vec<-vector()
RAM.vec<-vector()
IBI.rmssd.15<-vector()
IBI.rmssd.30<-vector()
IBI.rmssd.45<-vector()
IBI.rmssd.60<-vector()
IBI.MR.rmssd.15<-vector()
IBI.MR.rmssd.30<-vector()
IBI.MR.rmssd.45<-vector()
IBI.MR.rmssd.60<-vector()
IBI.HD.rmssd.15<-vector()
IBI.HD.rmssd.30<-vector()
IBI.HD.rmssd.45<-vector()
IBI.HD.rmssd.60<-vector()
IBI.GP.rmssd.15<-vector()
IBI.GP.rmssd.30<-vector()
IBI.GP.rmssd.45<-vector()
IBI.GP.rmssd.60<-vector()
N.IBIs.vec<-vector()
runtime<-vector()
warmup.vec<-vector()
iter.vec<-vector()
Hz.vec<-vector()
impute.Hz.vec<-vector()
GP.Hz.vec<-vector()
impute.fac.vec<-vector()
impute.start<-vector()
impute.end<-vector()
impute.tot<-vector()

#Parameter Means
HR.mean.vec<-vector()

#Parameter sd's
HR.SD.vec<-vector()

#Parameter R-hats
HR.Rhat.vec<-vector()

175

#Parameter N_eff
#Parameter Means
HR.N_eff.vec<-vector()

#Simple alpha convergence check
a1.ML.conv.vec<-vector()
a2.ML.conv.vec<-vector()

#Simple rho covergence check
r1.ML.conv.vec<-vector()
r2.ML.conv.vec<-vector()
r3.ML.conv.vec<-vector()

#Creating folder structure to allow for quick saving of Files
out.folder<-paste0(wd, '/Output')
IBI.orig.folder<-paste0(out.folder, '/IBI_Files/Original')
IBI.MR.folder<-paste0(out.folder, '/IBI_Files/Mean_Replacement')
IBI.HD.folder<-paste0(out.folder, '/IBI_Files/Hot_Deck')
IBI.impute.folder<-paste0(out.folder, '/IBI_Files/Imputed')
Peak.summary.folder<-paste0(out.folder, '/Peak_Detection_Summaries')
graphics.folder<-paste0(out.folder, '/Graphics')
Bayes.graphics<-paste0(graphics.folder, '/Bayes_Graphics')
model.folder<-paste0(out.folder, '/Model_Summaries')
diagnostics.folder<-paste0(out.folder, '/Diagnostics')

#Main simulation program:
for(i in 1:n.sims){
 #browser()
 #Getting the specifics for each run:
 impute.window.temp<-runif(1, impute.min, impute.max)
 row.select.temp<-sample(x=1:nrow(DF.segment), size = 1)
 dat.temp<-DF.segment[row.select.temp,]
 header.temp<-ifelse(dat.temp$Population=='child', dat.temp$Child_Header, dat.temp$Parent_Header)
 col.select.temp<-ifelse(dat.temp$Population=='child', dat.temp$Child_Column,
dat.temp$Parent_Column)

 #Selecting imputation boundaries
 impute.LB.temp<-runif(1, dat.temp$time.min, dat.temp$time.max)
 impute.UB.temp<-impute.LB.temp+impute.window.temp

 #getting PPG data
 PPG<-read.table(paste0(data.folder, '/', dat.temp$ID, '.txt'),
 skip = header.temp,
 header = F,
 sep = '\t'
)

 PPG<-PPG[,col.select.temp]

 PPG<-data.frame(PPG,
 Time = seq(from = 0, by = .0005, length.out = length(PPG))
)

 #Selecting target window for the case
 PPG.temp<-PPG[PPG$Time>=dat.temp$Start.adj & PPG$Time<=dat.temp$Stop.adj,]

 #Cleaning signal - de-spiking and smoothing heart rate
 PPG.temp$PPG<-as.numeric(smooth(PPG.temp$PPG))
 PPG.temp$PPG<-smooth.spline(PPG.temp$PPG, nknots = 10000)$y
 PPG.temp$PPG<-PPG.temp$PPG-predict(lm(PPG~Time, data = PPG.temp))

 #Obtaining original IBI values for section:
 IBI.orig.temp<-iter.IBI(PPG.temp$PPG, ds=2000)

 write.table(round(IBI.orig.temp$IBI.done, digits = 4),
 paste0(IBI.orig.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,

176

 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 write.table(round(head(IBI.orig.temp$Z, n=20), digits = 3),
 paste0(Peak.summary.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'original',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'
),
 sep = '\t',
 row.names = F
)

 #Mean replacement strategy - Will replace the number of IBIs in the affected range with mean
values
 #Step 1 - Restoring accurate timing file

 IBI.orig.time<-sum.rev(IBI.orig.temp$IBI.done)+dat.temp$Start.adj

 #Running very simple mean imputation (not accounting for time-series nature of the data)
 IBI.mean.replace<-IBI.orig.temp$IBI.done
 IBI.mean.replace[IBI.orig.time>impute.LB.temp &
 IBI.orig.time<impute.UB.temp]<-rep(mean(IBI.orig.temp$IBI.done))

 #removing first and last IBI value (to make more equivalent comparison with imputed data set)
 write.table(round(IBI.mean.replace[c(-1, -length(IBI.mean.replace))], digits = 4),
 paste0(IBI.MR.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'Mean_replace',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 #Running hot deck imputation (does not account for time-series nature of the data)
 IBI.sample.vals<-IBI.orig.temp$IBI.done[IBI.orig.time<impute.LB.temp |
IBI.orig.time>impute.UB.temp]
 IBI.hotdeck.replace<-IBI.orig.temp$IBI.done
 N.IBIs<-length(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp & IBI.orig.time<impute.UB.temp])
 IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp & IBI.orig.time<impute.UB.temp]<-
sample(x=IBI.sample.vals,
 size =
N.IBIs,
 replace
= T)
 write.table(round(IBI.hotdeck.replace[c(-1, -length(IBI.hotdeck.replace))], digits = 4),
 paste0(IBI.HD.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'HotDeck_replace',
 dat.temp$Start,
 dat.temp$Stop,

177

 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 for(j in 1:length(chains)){
 chain.temp<-chains[j]
 for(k in 1:length(warmup)){
 warmup.temp<-warmup[k]
 n.iter.temp<-n.iter[k]
 for(l in 1:length(Data.sample.Hz)){
 Hz.temp<-Data.sample.Hz[l]
 for(m in 1:length(impute.sample.Hz)){
 Hz.impute.temp<-impute.sample.Hz[m]
 for(n in 1:length(GP.sample.Hz)){
 Hz.GP.temp<-GP.sample.Hz[n]
 for(o in 1:length(impute.fac)){
 impute.fac.temp<-impute.fac[o]

 #Downsampling (if appropriate)
 select.int<-2000/Hz.temp
 PPG.impute<-PPG.temp[seq(1, nrow(PPG.temp), select.int),]
 IBI.impute<-iter.IBI(PPG.impute$PPG, ds=Hz.temp)

 #Getting some priors for the model
 mu_HP<-mean(1/IBI.impute$IBI.done[c(-1,-length(IBI.impute$IBI.done))], na.rm = T)
 sigma_HP<-sd(1/IBI.impute$IBI.done[c(-1,-length(IBI.impute$IBI.done))], na.rm = T)

 chain.temp<-2

 init.list<-list()
 for(x in 1:chain.temp){
 init.list[[x]]<-list(mu_HR = mu_HP)
 }

 if(Hz.temp>=Hz.impute.temp){
 #First selecting a series of time values to impute back in at the appropriate
sampling rate
 select.int2<-Hz.temp/Hz.impute.temp
 PPG.impute2<-PPG.impute[seq(1, nrow(PPG.impute), select.int2),]
 PPG.impute.pred<-PPG.impute2[PPG.impute2$Time>impute.LB.temp &
 PPG.impute2$Time<impute.UB.temp,]

 #Getting what will be Prediction values:
 Xp<-PPG.impute.pred$Time
 N2<-length(PPG.impute.pred$Time)

 #Acquiring "good data"
 min.TIME2<-min(Xp)
 max.TIME2<-max(Xp)
 time.span<-max.TIME2-min.TIME2
 Y.vals<-rbind(PPG.impute2[PPG.impute2$Time>min.TIME2-impute.fac.temp*time.span &
 PPG.impute2$Time<min.TIME2,],
 PPG.impute2[PPG.impute2$Time>max.TIME2 &

PPG.impute2$Time<max.TIME2+impute.fac.temp*time.span,])
 Y.vals<-na.omit(Y.vals)
 tot.Y.vals<-length(Y.vals[,1])
 sel.Y.vals<-round(seq(1, tot.Y.vals, length.out =
round(tot.Y.vals/Hz.impute.temp*Hz.GP.temp)))
 sel.Y.vals<-unique(sel.Y.vals)
 Y<-Y.vals$PPG[sel.Y.vals]
 X<-Y.vals$Time[sel.Y.vals]
 N1<-length(X)

 #Running Model - there is no need for respiration priors
 dat<-list(N1=N1,
 N2=N2,

178

 Xp=Xp,
 X=X,
 Y=Y,
 mu_HR=mu_HP,
 sigma_HR=sigma_HP
)

 #Obtaining estimates for hyper-parameters using ML approach
 opt_model<-stan_model(file=paste0(wd, '/Stan_code/GP_1_opt.stan'))

 #need to find some way to assess convergence...
 #Identifying values for hyperparameters
 print('Obtaining first ML estimate for hyperparameters')
 opt_fit1<-NULL
 attempt<-1
 while(is.null(opt_fit1) & attempt <=15){
 print(paste('Convergence attempt', attempt, 'out of 15'))
 attempt<- attempt + 1
 try(
 opt_fit1<-optimizing(opt_model,
 data=dat,
 init=list(mu_HR = mu_HP),
 seed=sample(1:5000, size = 1), iter = 10000)
)
 }

 print('Obtaining second ML estimate for hyperparameters')
 opt_fit2<-NULL
 attempt<-1
 while(is.null(opt_fit2) & attempt <=15){
 print(paste('Convergence attempt', attempt, 'out of 15'))
 attempt<- attempt + 1
 try(
 opt_fit2<-optimizing(opt_model,
 data=dat,
 init=list(mu_HR = mu_HP),
 seed=sample(1:5000, size = 1), iter = 10000)
)
 }

 if(!is.null(opt_fit1)){
 alpha1.1 <- opt_fit1$par['a1']
 alpha2.1 <- opt_fit1$par['a2']
 rho1.1 <- opt_fit1$par['r1']
 rho2.1 <- opt_fit1$par['r2']
 rho3.1 <- opt_fit1$par['r3']
 }

 if(!is.null(opt_fit2)){
 alpha1.2 <- opt_fit2$par['a1']
 alpha2.2 <- opt_fit2$par['a2']
 rho1.2 <- opt_fit2$par['r1']
 rho2.2 <- opt_fit2$par['r2']
 rho3.2 <- opt_fit2$par['r3']
 }

 if(!is.null(opt_fit1) & !is.null(opt_fit2)){
 #Simple Alpha convergence check
 a1.ML.conv.vec<-c(a1.ML.conv.vec,(abs(alpha1.1-alpha1.2)<.0001))
 a2.ML.conv.vec<-c(a2.ML.conv.vec,(abs(alpha2.1-alpha2.2)<.0001))

 #Simple rho covergence check
 r1.ML.conv.vec<-c(r1.ML.conv.vec,(abs(rho1.1-rho1.2)<.0001))
 r2.ML.conv.vec<-c(r2.ML.conv.vec,(abs(rho2.1-rho2.2)<.0001))
 r3.ML.conv.vec<-c(r3.ML.conv.vec,(abs(rho3.1-rho3.2)<.0001))
 }

 else{
 a1.ML.conv.vec<-c(a1.ML.conv.vec, NA)

179

 a2.ML.conv.vec<-c(a2.ML.conv.vec, NA)

 #Simple rho covergence check
 r1.ML.conv.vec<-c(r1.ML.conv.vec, NA)
 r2.ML.conv.vec<-c(r2.ML.conv.vec, NA)
 r3.ML.conv.vec<-c(r3.ML.conv.vec, NA)
 }

 if(is.null(opt_fit1) & !is.null(opt_fit2)){
 alpha1.1<-alpha1.2
 alpha2.1<-alpha2.2
 rho1.1<-rho1.2
 rho2.1<-rho2.2
 rho3.1<-rho3.2
 }

 pars.to.monitor<-c('HR', 'Ypred')
 start.time.temp<-Sys.time()

 dat.opt<-list(N1=N1,
 N2=N2,
 Xp=Xp,
 X=X,
 Y=Y,
 mu_HR=mu_HP,
 sigma_HR=sigma_HP,
 a1 = alpha1.1,
 a2 = alpha2.1,
 r1 = rho1.1,
 r2 = rho2.1,
 r3 = rho3.1
)

 fit.stan<-stan(file=paste0(wd, '/Stan_code/GP_1.stan'),
 data = dat.opt,
 init = init.list,
 warmup = warmup.temp,
 iter = n.iter.temp,
 refresh = 100,
 chains = 2,
 pars = pars.to.monitor,
 control = list(adapt_delta = .95,
 max_treedepth = 15)
)

 run_time<-round(Sys.time()-start.time.temp, digits = 3)
 units(run_time)<-'mins'
 run_time<-as.numeric(run_time)

 y_pred<-rstan::extract(fit.stan, 'Ypred')
 PPG.new<-colMeans(y_pred$Ypred)
 PPG.DF.new<-data.frame(PPG = PPG.new,
 Time = Xp)

 GP.summary<-as.data.frame(summary(fit.stan, pars = pars.to.monitor[-
length(pars.to.monitor)],
 probs = c(.1, .9))$summary)

 write.table(round(GP.summary, digits = 3),
 paste0(model.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 'GP_impute',
 round(impute.LB.temp, digits = 2),
 round(impute.UB.temp, digits = 2),
 Hz.temp,
 Hz.impute.temp,

180

 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 sep = '_'),
 '.txt'),
 row.names = T,
 sep='\t'
)

 g1<-ggplot()+
 geom_line(data=PPG.DF.new, aes(x=Time, y = PPG), color = 'red', lty='dashed')+
 geom_line(data=PPG.impute.pred, aes(x=Time, y=PPG), color = 'black')+
 ggtitle(paste(dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

 ggsave(filename = paste0(graphics.folder, paste('/',
 dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g1,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

 g2<-traceplot(fit.stan, pars='HR', inc_warmup=T)+
 ggtitle(paste('HR param', dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, '\n', 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

 ggsave(filename = paste0(Bayes.graphics, paste('/',
 dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g2,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

 PPG.impute.fin<-PPG.impute2
 PPG.impute.fin$PPG[PPG.impute.fin$Time>impute.LB.temp &
 PPG.impute.fin$Time<impute.UB.temp]<-PPG.new

181

 IBI.GP.impute.temp<-iter.IBI(PPG.impute.fin$PPG, ds=Hz.impute.temp)$IBI.done
 IBI.GP.impute.time<-sum.rev(IBI.GP.impute.temp)+dat.temp$Start.adj
 write.table(round(IBI.GP.impute.temp[c(-1, -length(IBI.GP.impute.temp))], digits =
4),
 paste0(IBI.impute.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 'GP_impute',
 round(impute.LB.temp, digits = 2),
 round(impute.UB.temp, digits = 2),
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 sep = '_'),
 '.txt'),
 row.names = F
)

 HR.est<-rstan::extract(fit.stan, 'HR')

 #Basic simulation vectors
 ID.vec<-c(ID.vec, dat.temp$ID)
 impute.ID<-c(impute.ID, paste('Segment', i, sep = '_'))
 pop.vec<-c(pop.vec, dat.temp$Population)
 CPU.vec<-c(CPU.vec, benchmarkme::get_cpu()$model_name)
 Cores.vec<-c(Cores.vec, parallel::detectCores())
 RAM.vec<-c(RAM.vec, paste(round(benchmarkme::get_ram()/1073741824), 'GB'))
 start.vec<-c(start.vec, dat.temp$Start)
 stop.vec<-c(stop.vec, dat.temp$Stop)
 N.IBIs.vec<-c(N.IBIs.vec, N.IBIs)
 IBI.GP.rmssd.15<-c(IBI.GP.rmssd.15,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-7.5
&

IBI.GP.impute.time<impute.UB.temp+7.5]))
 IBI.GP.rmssd.30<-c(IBI.GP.rmssd.30,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-15 &

IBI.GP.impute.time<impute.UB.temp+15]))
 IBI.GP.rmssd.45<-c(IBI.GP.rmssd.45,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-22.5
&

IBI.GP.impute.time<impute.UB.temp+22.5]))
 IBI.GP.rmssd.60<-c(IBI.GP.rmssd.60,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-30 &

IBI.GP.impute.time<impute.UB.temp+30]))
 runtime<-c(runtime, run_time)
 warmup.vec<-c(warmup.vec, warmup.temp)
 iter.vec<-c(iter.vec, n.iter.temp)
 Hz.vec<-c(Hz.vec, Hz.temp)
 impute.Hz.vec<-c(impute.Hz.vec, Hz.impute.temp)
 GP.Hz.vec<-c(GP.Hz.vec, Hz.GP.temp)
 impute.fac.vec<-c(impute.fac.vec, impute.fac.temp)
 impute.start<-c(impute.start, min.TIME2)
 impute.end<-c(impute.end, max.TIME2)
 impute.tot<-c(impute.tot, time.span)

 #Parameter Means
 HR.mean.vec<-c(HR.mean.vec, mean(HR.est$HR))

182

 #Parameter sd's
 HR.SD.vec<-c(HR.SD.vec, sd(HR.est$HR))

 #Parameter R-hats
 HR.Rhat.vec<-c(HR.Rhat.vec, GP.summary$Rhat[rownames(GP.summary)=='HR'])

 #Parameter N_eff
 HR.N_eff.vec<-c(HR.N_eff.vec, GP.summary$n_eff[rownames(GP.summary)=='HR'])

 #Getting a vector of original value rmssd's
 IBI.rmssd.15<-c(IBI.rmssd.15,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.rmssd.30<-c(IBI.rmssd.30,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.rmssd.45<-c(IBI.rmssd.45,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-22.5 &

IBI.orig.time<impute.UB.temp+22.5]))
 IBI.rmssd.60<-c(IBI.rmssd.60,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))

 #Getting a vector of mean replacement rmssd's
 IBI.MR.rmssd.15<-c(IBI.MR.rmssd.15,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.MR.rmssd.30<-c(IBI.MR.rmssd.30,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.MR.rmssd.45<-c(IBI.MR.rmssd.45,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-22.5 &
 IBI.orig.time<impute.UB.temp+22.5]))
 IBI.MR.rmssd.60<-c(IBI.MR.rmssd.60,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))

 #Getting a vector of hotdeck replacement rmssd's
 IBI.HD.rmssd.15<-c(IBI.HD.rmssd.15,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.HD.rmssd.30<-c(IBI.HD.rmssd.30,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.HD.rmssd.45<-c(IBI.HD.rmssd.45,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-22.5 &

IBI.orig.time<impute.UB.temp+22.5]))
 IBI.HD.rmssd.60<-c(IBI.HD.rmssd.60,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))
 }
 }
 }
 }
 }
 }
 }
}

save(list = ls(),
 file = paste0(out.folder, '/', paste('GP_1', Sys.time(), n.sims, sep = '_'), '.RData'))

183

Appendix D.2 Re-sampling Code for Gaussian Process Model Imputation Model 2

#Ensuring random starts for two different threads on same computer...
set.seed(as.numeric(Sys.time()))

#Original Processing:

dat.time.orig<-read.csv('/home/mbarsted/Dropbox/Dissertation/Chapter
4/Sim_data_2_b/Raw_coded.csv',
 stringsAsFactors = F)

#cleaning up extra rows
dat.time.orig<-dat.time.orig[-91:-nrow(dat.time.orig),]

#Taking only cases with at least 180 continuous seconds worth of data:
dat.time.orig<-dat.time.orig[dat.time.orig$Window_Length>=180,]

table(dat.time.orig$Population) #not bad - about 50/50
#40 sections of adult data
#39 sections of child data

#Converting "Adult" to "adult" and "Child" to "Child"
dat.time.orig$Population<-ifelse(dat.time.orig$Population=='Adult', 'adult', 'child')

wd<-'/home/mbarsted/Dropbox/Dissertation/Chapter 4/Sim_data_2_b'

#Bringing in file information worksheet
file_info<-read.csv(paste0(wd, '/Physio_Tracking - Sheet1.csv'), stringsAsFactors = F)

#Converting ID to common structure:
file_info$ID<-substr(file_info$Video_1, start=1, stop=6)

#Task timing file
task.time<-read.table(paste0(wd, '/Timing_File_forVizEdit.txt'),
 header = T, sep = '\t')
colnames(task.time)[1]<-'ID'

#Creating a test case folder - will run five imputations under each condition on 5 different
files:
#All test files will be with adult files.
data.folder<-paste0(wd, '/Good_3min')

file.names<-list.files(data.folder)

#Getting appropriate timing values for sections of "good" data
DF.segment<-merge(dat.time.orig, task.time[,1:2], by='ID')

#Will not be able to use case 051_T2 as there appears to be a task/timing issue there (loses 1
child case)
DF.segment<-DF.segment[DF.segment$ID!="051_T2",]
DF.segment$Start.adj<-DF.segment$Start+DF.segment$Video
DF.segment$Stop.adj<-DF.segment$Stop+DF.segment$Video
DF.segment$time.min<-DF.segment$Start.adj+31
DF.segment$time.max<-DF.segment$Stop.adj-31

DF.segment<-merge(DF.segment, file_info[,c(1,14:17)], by='ID')

#Functions for identifying heart beats
#==
#Function 1 - Finding Peakings Using Specified bandwidth:
findpeaks <- function (x, m = 3){
 shape <- diff(sign(diff(x, na.pad = FALSE)))
 pks <- sapply(which(shape < 0), FUN = function(i){
 z <- i - m + 1
 z <- ifelse(z > 0, z, 1)
 w <- i + m + 1

184

 w <- ifelse(w < length(x), w, length(x))
 if(all(x[c(z : i, (i + 2) : w)] <= x[i + 1])) return(i + 1) else return(numeric(0))
 })
 pks <- unlist(pks)
 pks
}
#===
#Function 2 - Summing IBIs from Raw PPG file:
time.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], x[i]-x[i-1])
 }
 return(Z)
}
#===
#Function 2b - Summing Time from IBIs
IBI.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-sum(x[1:i])
 }
 return(Z)
}
#===
#Function 3 - Iterative function for getting IBIs
iter.IBI<-function(x, ds=2000){
 #browser()
 require(psych)
 s<-round(seq(round(ds/50), round(ds/2), length.out = 200))
 Z<-data.frame(rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)))
 for(i in 1:length(s)){
 IBI<-findpeaks(x, s[i])
 time<-time.sum(IBI)/ds
 Z[i,1]<-s[i]
 Z[i,2]<-sd(time)
 Z[i,3]<-max(time)-min(time)
 Z[i,4]<-rmssd(time)
 Z[i,5]<-mean(acf(time, lag.max = length(time)/20, plot = F)$acf)
 Z[i,6]<-s[i]/ds
 }
 colnames(Z)<-c('BW', 'SD', 'Range', 'RMSSD', 'AC', 'BW(s)')
 Z<-Z[order(Z$RMSSD, decreasing = F),]
 IBI.fin<-findpeaks(x, m=Z[1,1])-1
 IBI.fin<-IBI.fin/ds
 IBI.done<-time.sum(IBI.fin)
 IBI.comp<-list(IBI.done, Z)
 names(IBI.comp)<-c('IBI.done', 'Z')
 return(IBI.comp)
}
#===
#Function 4 - Obtaining Time Values for IBI
sum.rev<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], sum(x[1:(i-1)])+x[i])
 }
 return(Z)
}

###+++
#setting up models:
chains<-2
impute.min<-2

185

impute.max<-8
warmup<-c(2000)
n.iter<-c(2500)
Data.sample.Hz<-c(2000)
impute.sample.Hz<-c(125, 250)
GP.sample.Hz<-c(4, 8, 12)
impute.fac<-c(1,2,3)

#Going to need to bring in header information
#For now all test cases have 15 rows of header information:

library(ggplot2)
library(signal)
library(psych)
library(bayesplot)
library(MCMCvis)
library(rstan)
library(rstanarm)
library(astsa)
library(benchmarkme)
options(mc.cores=parallel::detectCores())
rstan_options(auto_write = TRUE)
#Run the complete simulation from here
#Basing this on 5 simulations each to start:
n.sims<-1

#Basic simulation vectors
ID.vec<-vector()
impute.ID<-vector()
CPU.vec<-vector()
Cores.vec<-vector()
RAM.vec<-vector()
pop.vec<-vector()
start.vec<-vector()
stop.vec<-vector()
IBI.rmssd.15<-vector()
IBI.rmssd.30<-vector()
IBI.rmssd.45<-vector()
IBI.rmssd.60<-vector()
IBI.MR.rmssd.15<-vector()
IBI.MR.rmssd.30<-vector()
IBI.MR.rmssd.45<-vector()
IBI.MR.rmssd.60<-vector()
IBI.HD.rmssd.15<-vector()
IBI.HD.rmssd.30<-vector()
IBI.HD.rmssd.45<-vector()
IBI.HD.rmssd.60<-vector()
IBI.GP.rmssd.15<-vector()
IBI.GP.rmssd.30<-vector()
IBI.GP.rmssd.45<-vector()
IBI.GP.rmssd.60<-vector()
N.IBIs.vec<-vector()
runtime<-vector()
warmup.vec<-vector()
iter.vec<-vector()
Hz.vec<-vector()
impute.Hz.vec<-vector()
GP.Hz.vec<-vector()
impute.fac.vec<-vector()
impute.start<-vector()
impute.end<-vector()
impute.tot<-vector()

#Parameter Means
HR.mean.vec<-vector()

#Parameter sd's
HR.SD.vec<-vector()

186

#Parameter R-hats
HR.Rhat.vec<-vector()

#Parameter N_eff
HR.N_eff.vec<-vector()

#Getting ML Convergence test
a1.ML.conv.vec<-vector()
a2.ML.conv.vec<-vector()
a3.ML.conv.vec<-vector()
r1.ML.conv.vec<-vector()
r2.ML.conv.vec<-vector()
r3.ML.conv.vec<-vector()
r4.ML.conv.vec<-vector()
r5.ML.conv.vec<-vector()
Resp.ML.conv.vec<-vector()

#Creating folder structure to allow for quick saving of Files
out.folder<-paste0(wd, '/Output')
IBI.orig.folder<-paste0(out.folder, '/IBI_Files/Original')
IBI.MR.folder<-paste0(out.folder, '/IBI_Files/Mean_Replacement')
IBI.HD.folder<-paste0(out.folder, '/IBI_Files/Hot_Deck')
IBI.impute.folder<-paste0(out.folder, '/IBI_Files/Imputed')
Peak.summary.folder<-paste0(out.folder, '/Peak_Detection_Summaries')
graphics.folder<-paste0(out.folder, '/Graphics')
Bayes.graphics<-paste0(graphics.folder, '/Bayes_Graphics')
model.folder<-paste0(out.folder, '/Model_Summaries')
diagnostics.folder<-paste0(out.folder, '/Diagnostics')

#Main simulation program:
for(i in 1:n.sims){
 #browser()
 #Getting the specifics for each run:
 impute.window.temp<-runif(1, impute.min, impute.max)
 row.select.temp<-sample(x=1:nrow(DF.segment), size = 1)

 #Obtaining temporary dataset
 dat.temp<-DF.segment[row.select.temp,]
 header.temp<-ifelse(dat.temp$Population=='child', dat.temp$Child_Header, dat.temp$Parent_Header)
 col.select.temp<-ifelse(dat.temp$Population=='child', dat.temp$Child_Column,
dat.temp$Parent_Column)

 #Selecting imputation boundaries
 impute.LB.temp<-runif(1, dat.temp$time.min, dat.temp$time.max)
 impute.UB.temp<-impute.LB.temp+impute.window.temp

 #getting PPG data
 PPG<-read.table(paste0(data.folder, '/', dat.temp$ID, '.txt'),
 skip = header.temp,
 header = F,
 sep = '\t'
)

 PPG<-PPG[,col.select.temp]

 PPG<-data.frame(PPG,
 Time = seq(from = 0, by = .0005, length.out = length(PPG))
)

 #Selecting target window for the case
 PPG.temp<-PPG[PPG$Time>=dat.temp$Start.adj & PPG$Time<=dat.temp$Stop.adj,]

 #Cleaning signal - de-spiking and smoothing heart rate
 PPG.temp$PPG<-as.numeric(smooth(PPG.temp$PPG))
 PPG.temp$PPG<-smooth.spline(PPG.temp$PPG, nknots = 10000)$y
 PPG.temp$PPG<-PPG.temp$PPG-predict(lm(PPG~Time, data = PPG.temp))

 #Obtaining original IBI values for section:

187

 IBI.orig.temp<-iter.IBI(PPG.temp$PPG, ds=2000)

 write.table(round(IBI.orig.temp$IBI.done, digits = 4),
 paste0(IBI.orig.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 write.table(round(head(IBI.orig.temp$Z, n=20), digits = 3),
 paste0(Peak.summary.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'original',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'
),
 sep = '\t',
 row.names = F
)

 #Mean replacement strategy - Will replace the number of IBIs in the affected range with mean
values
 #Step 1 - Restoring accurate timing file

 IBI.orig.time<-sum.rev(IBI.orig.temp$IBI.done)+dat.temp$Start.adj

 #Running very simple mean imputation (not accounting for time-series nature of the data)
 IBI.mean.replace<-IBI.orig.temp$IBI.done
 IBI.mean.replace[IBI.orig.time>impute.LB.temp &
 IBI.orig.time<impute.UB.temp]<-rep(mean(IBI.orig.temp$IBI.done))

 #removing first and last IBI value (to make more equivalent comparison with imputed data set)
 write.table(round(IBI.mean.replace[c(-1, -length(IBI.mean.replace))], digits = 4),
 paste0(IBI.MR.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'Mean_replace',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 #Running hot deck imputation (does not account for time-series nature of the data)
 IBI.sample.vals<-IBI.orig.temp$IBI.done[IBI.orig.time<impute.LB.temp |
IBI.orig.time>impute.UB.temp]
 IBI.hotdeck.replace<-IBI.orig.temp$IBI.done
 N.IBIs<-length(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp & IBI.orig.time<impute.UB.temp])
 IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp & IBI.orig.time<impute.UB.temp]<-
sample(x=IBI.sample.vals,
 size =
N.IBIs,
 replace
= T)
 write.table(round(IBI.hotdeck.replace[c(-1, -length(IBI.hotdeck.replace))], digits = 4),

188

 paste0(IBI.HD.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'HotDeck_replace',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 for(j in 1:length(chains)){
 chain.temp<-chains[j]
 for(k in 1:length(warmup)){
 warmup.temp<-warmup[k]
 n.iter.temp<-n.iter[k]
 for(l in 1:length(Data.sample.Hz)){
 Hz.temp<-Data.sample.Hz[l]
 for(m in 1:length(impute.sample.Hz)){
 Hz.impute.temp<-impute.sample.Hz[m]
 for(n in 1:length(GP.sample.Hz)){
 Hz.GP.temp<-GP.sample.Hz[n]
 for(o in 1:length(impute.fac)){
 impute.fac.temp<-impute.fac[o]

 #Downsampling (if appropriate)
 select.int<-2000/Hz.temp
 PPG.impute<-PPG.temp[seq(1, nrow(PPG.temp), select.int),]
 IBI.impute<-iter.IBI(PPG.impute$PPG, ds=Hz.temp)

 #Getting some priors for the model
 mu_HP<-mean(1/IBI.impute$IBI.done[c(-1,-length(IBI.impute$IBI.done))], na.rm = T)
 sigma_HP<-sd(1/IBI.impute$IBI.done[c(-1,-length(IBI.impute$IBI.done))], na.rm = T)

 #Estimating Respiration parameter & respiration SD if population age is child
 if(dat.temp$Population == 'child'){
 spec<-mvspec(PPG.temp,
 spans = c(7,7),
 taper=.1,
 demean = T,
 log='no',
 plot = F)
 min.R<-20/60/Hz.temp
 max.R<-30/60/Hz.temp

 spec.trunc<-data.frame(freq=spec$freq[spec$freq>=min.R&spec$freq<=max.R],
 spec=spec$spec[spec$freq>=min.R&spec$freq<=max.R])
 spec.trunc$prob<-spec.trunc$spec/sum(spec.trunc$spec)
 tmp.dist<-sample(spec.trunc$freq, size = 10000, replace = T, prob =
spec.trunc$prob)*Hz.temp
 mu_R<-mean(tmp.dist)
 sigma_R<-sd(tmp.dist)
 }

 #Estimating Respiration parameter & respiration SD if population age is adult
 if(dat.temp$Population == 'adult'){
 spec<-mvspec(PPG.temp,
 spans = c(7,7),
 taper=.1,
 demean = T,
 log='no',
 plot = F)
 min.R<-12/60/Hz.temp
 max.R<-20/60/Hz.temp

 spec.trunc<-data.frame(freq=spec$freq[spec$freq>=min.R&spec$freq<=max.R],
 spec=spec$spec[spec$freq>=min.R&spec$freq<=max.R])

189

 spec.trunc$prob<-spec.trunc$spec/sum(spec.trunc$spec)
 tmp.dist<-sample(spec.trunc$freq, size = 10000, replace = T, prob =
spec.trunc$prob)*Hz.temp
 mu_R<-mean(tmp.dist)
 sigma_R<-sd(tmp.dist)
 }

 init.list<-list()
 for(x in 1:chain.temp){
 init.list[[x]]<-list(mu_HR = mu_HP,
 sigma_HR = sigma_HP,
 mu_R = mu_R,
 sigma_R = sigma_R)
 }

 if(Hz.temp>=Hz.impute.temp){
 #First selecting a series of time values to impute back in at the appropriate
sampling rate
 select.int2<-Hz.temp/Hz.impute.temp
 PPG.impute2<-PPG.impute[seq(1, nrow(PPG.impute), select.int2),]
 PPG.impute.pred<-PPG.impute2[PPG.impute2$Time>impute.LB.temp &
 PPG.impute2$Time<impute.UB.temp,]

 #Getting what will be Prediction values:
 Xp<-PPG.impute.pred$Time
 N2<-length(PPG.impute.pred$Time)

 #Acquiring "good data"
 min.TIME2<-min(Xp)
 max.TIME2<-max(Xp)
 time.span<-max.TIME2-min.TIME2
 Y.vals<-rbind(PPG.impute2[PPG.impute2$Time>min.TIME2-impute.fac.temp*time.span &
 PPG.impute2$Time<min.TIME2,],
 PPG.impute2[PPG.impute2$Time>max.TIME2 &

PPG.impute2$Time<max.TIME2+impute.fac.temp*time.span,])
 Y.vals<-na.omit(Y.vals)
 tot.Y.vals<-length(Y.vals[,1])
 sel.Y.vals<-round(seq(1, tot.Y.vals, length.out =
round(tot.Y.vals/Hz.impute.temp*Hz.GP.temp)))
 sel.Y.vals<-unique(sel.Y.vals)
 Y<-Y.vals$PPG[sel.Y.vals]
 X<-Y.vals$Time[sel.Y.vals]
 N1<-length(X)

 #Running Model - there is no need for respiration priors
 dat<-list(N1=N1,
 N2=N2,
 Xp=Xp,
 X=X,
 Y=Y,
 mu_HR=mu_HP,
 sigma_HR=sigma_HP,
 mu_R = mu_R,
 sigma_R = sigma_R
)

 #Obtaining estimates for hyper-parameters using ML approach
 opt_model<-stan_model(file=paste0(wd, '/Stan_code/GP_2_opt.stan'))

 #need to find some way to assess convergence...
 print('Obtaining first ML estimate for hyperparameters')
 opt_fit1<-NULL
 attempt<-1
 while(is.null(opt_fit1) & attempt <=15){
 print(paste('Convergence attempt', attempt, 'out of 15'))
 attempt<- attempt + 1
 try(
 opt_fit1<-optimizing(opt_model,

190

 data=dat,
 init=list(mu_HR = mu_HP, mu_R = mu_R),
 seed=sample(1:5000, size = 1), iter = 10000)
)
 }

 print('Obtaining second ML estimate for hyperparameters')
 opt_fit2<-NULL
 attempt<-1
 while(is.null(opt_fit2) & attempt <=15){
 print(paste('Convergence attempt', attempt, 'out of 15'))
 attempt<- attempt + 1
 try(
 opt_fit2<-optimizing(opt_model,
 data=dat,
 init=list(mu_HR = mu_HP, mu_R = mu_R),
 seed=sample(1:5000, size = 1), iter = 10000)
)
 }

 if(!is.null(opt_fit1)){
 alpha1.1 <- opt_fit1$par['a1']
 alpha2.1 <- opt_fit1$par['a2']
 alpha3.1 <- opt_fit1$par['a3']
 rho1.1 <- opt_fit1$par['r1']
 rho2.1 <- opt_fit1$par['r2']
 rho3.1 <- opt_fit1$par['r3']
 rho4.1 <- opt_fit1$par['r4']
 rho5.1 <- opt_fit1$par['r5']
 Resp.1 <- opt_fit1$par['R']
 }

 if(!is.null(opt_fit2)){
 alpha1.2 <- opt_fit2$par['a1']
 alpha2.2 <- opt_fit2$par['a2']
 alpha3.2 <- opt_fit2$par['a3']
 rho1.2 <- opt_fit2$par['r1']
 rho2.2 <- opt_fit2$par['r2']
 rho3.2 <- opt_fit2$par['r3']
 rho4.2 <- opt_fit2$par['r4']
 rho5.2 <- opt_fit2$par['r5']
 Resp.2 <- opt_fit2$par['R']
 }

 if(!is.null(opt_fit1) & !is.null(opt_fit2)){
 #Simple Alpha convergence check
 a1.ML.conv.vec<-c(a1.ML.conv.vec, abs(alpha1.1-alpha1.2))
 a2.ML.conv.vec<-c(a2.ML.conv.vec, abs(alpha2.1-alpha2.2))
 a3.ML.conv.vec<-c(a3.ML.conv.vec, abs(alpha3.1-alpha3.2))

 #Simple rho covergence check
 r1.ML.conv.vec<-c(r1.ML.conv.vec, abs(rho1.1-rho1.2))
 r2.ML.conv.vec<-c(r2.ML.conv.vec, abs(rho2.1-rho2.2))
 r3.ML.conv.vec<-c(r3.ML.conv.vec, abs(rho3.1-rho3.2))
 r4.ML.conv.vec<-c(r4.ML.conv.vec, abs(rho4.1-rho4.2))
 r5.ML.conv.vec<-c(r5.ML.conv.vec, abs(rho5.1-rho5.2))

 #Respiration Convergence
 Resp.ML.conv.vec<-c(Resp.ML.conv.vec, abs(Resp.1-Resp.2))
 }

 else{
 #Simple Alpha convergence check
 a1.ML.conv.vec<-c(a1.ML.conv.vec, NA)
 a2.ML.conv.vec<-c(a2.ML.conv.vec, NA)
 a3.ML.conv.vec<-c(a3.ML.conv.vec, NA)

 #Simple rho covergence check
 r1.ML.conv.vec<-c(r1.ML.conv.vec, NA)

191

 r2.ML.conv.vec<-c(r2.ML.conv.vec, NA)
 r3.ML.conv.vec<-c(r3.ML.conv.vec, NA)
 r4.ML.conv.vec<-c(r4.ML.conv.vec, NA)
 r5.ML.conv.vec<-c(r5.ML.conv.vec, NA)

 #Respiration convergence
 Resp.ML.conv.vec<-c(Resp.ML.conv.vec, NA)
 }

 if(is.null(opt_fit1) & !is.null(opt_fit2)){
 alpha1.1<-alpha1.2
 alpha2.1<-alpha2.2
 alpha3.1<-alpha3.2
 rho1.1<-rho1.2
 rho2.1<-rho2.2
 rho3.1<-rho3.2
 rho4.1<-rho4.2
 rho5.1<-rho5.2
 Resp.1<-Resp.2
 }

 pars.to.monitor<-c('HR', 'Ypred')
 start.time.temp<-Sys.time()

 start.time.temp<-Sys.time()

 dat.opt<-list(N1=N1,
 N2=N2,
 Xp=Xp,
 X=X,
 Y=Y,
 mu_HR=mu_HP,
 sigma_HR=sigma_HP,
 a1 = alpha1.1,
 a2 = alpha2.1,
 a3 = alpha3.1,
 r1 = rho1.1,
 r2 = rho2.1,
 r3 = rho3.1,
 r4 = rho4.1,
 r5 = rho5.1,
 R = Resp.1
)

 fit.stan<-stan(file=paste0(wd, '/Stan_code/GP_2_b.stan'),
 data = dat.opt,
 init = init.list,
 warmup = warmup.temp,
 iter = n.iter.temp,
 refresh=100,
 chains = chain.temp,
 pars = pars.to.monitor,
 control = list(adapt_delta = .95,
 max_treedepth = 15)
)

 run_time<-round(Sys.time()-start.time.temp, digits = 3)
 units(run_time)<-'mins'
 run_time<-as.numeric(run_time)

 y_pred<-rstan::extract(fit.stan, 'Ypred')
 PPG.new<-colMeans(y_pred$Ypred)
 PPG.DF.new<-data.frame(PPG = PPG.new,
 Time = Xp)

 GP.summary<-as.data.frame(summary(fit.stan, pars = pars.to.monitor[-
length(pars.to.monitor)],
 probs = c(.1, .9))$summary)

192

 write.table(round(GP.summary, digits = 3),
 paste0(model.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 'GP_impute',
 round(impute.LB.temp, digits = 2),
 round(impute.UB.temp, digits = 2),
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = T,
 sep='\t'
)

 g1<-ggplot()+
 geom_line(data=PPG.DF.new, aes(x=Time, y = PPG), color = 'red', lty='dashed')+
 geom_line(data=PPG.impute.pred, aes(x=Time, y=PPG), color = 'black')+
 ggtitle(paste(dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

 ggsave(filename = paste0(graphics.folder, paste('/',
 dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g1,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

 g2<-traceplot(fit.stan, pars='HR', inc_warmup=T)+
 ggtitle(paste('HR param', dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, '\n', 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

 ggsave(filename = paste0(Bayes.graphics, paste('/',
 dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,

193

 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g2,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

 PPG.impute.fin<-PPG.impute2
 PPG.impute.fin$PPG[PPG.impute.fin$Time>impute.LB.temp &
 PPG.impute.fin$Time<impute.UB.temp]<-PPG.new

 IBI.GP.impute.temp<-iter.IBI(PPG.impute.fin$PPG, ds=Hz.impute.temp)$IBI.done
 IBI.GP.impute.time<-sum.rev(IBI.GP.impute.temp)+dat.temp$Start.adj
 write.table(round(IBI.GP.impute.temp[c(-1, -length(IBI.GP.impute.temp))], digits =
4),
 paste0(IBI.impute.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 'GP_impute',
 round(impute.LB.temp, digits = 2),
 round(impute.UB.temp, digits = 2),
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 HR.est<-rstan::extract(fit.stan, 'HR')

 #Basic simulation vectors
 ID.vec<-c(ID.vec, dat.temp$ID)
 impute.ID<-c(impute.ID, paste('Segment', i, sep = '_'))
 CPU.vec<-c(CPU.vec, benchmarkme::get_cpu()$model_name)
 Cores.vec<-c(Cores.vec, parallel::detectCores())
 RAM.vec<-c(RAM.vec, paste(round(benchmarkme::get_ram()/1073741824), 'GB'))
 pop.vec<-c(pop.vec, dat.temp$Population)
 N.IBIs.vec<-c(N.IBIs.vec, N.IBIs)
 start.vec<-c(start.vec, dat.temp$Start)
 stop.vec<-c(stop.vec, dat.temp$Stop)
 IBI.GP.rmssd.15<-c(IBI.GP.rmssd.15,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-7.5
&

IBI.GP.impute.time<impute.UB.temp+7.5]))
 IBI.GP.rmssd.30<-c(IBI.GP.rmssd.30,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-15 &

IBI.GP.impute.time<impute.UB.temp+15]))
 IBI.GP.rmssd.45<-c(IBI.GP.rmssd.45,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-22.5
&

IBI.GP.impute.time<impute.UB.temp+22.5]))
 IBI.GP.rmssd.60<-c(IBI.GP.rmssd.60,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-30 &

IBI.GP.impute.time<impute.UB.temp+30]))
 runtime<-c(runtime, run_time)

194

 warmup.vec<-c(warmup.vec, warmup.temp)
 iter.vec<-c(iter.vec, n.iter.temp)
 Hz.vec<-c(Hz.vec, Hz.temp)
 impute.Hz.vec<-c(impute.Hz.vec, Hz.impute.temp)
 GP.Hz.vec<-c(GP.Hz.vec, Hz.GP.temp)
 impute.fac.vec<-c(impute.fac.vec, impute.fac.temp)
 impute.start<-c(impute.start, min.TIME2)
 impute.end<-c(impute.end, max.TIME2)
 impute.tot<-c(impute.tot, time.span)

 #Parameter Means
 HR.mean.vec<-c(HR.mean.vec, mean(HR.est$HR))

 #Parameter sd's
 HR.SD.vec<-c(HR.SD.vec, sd(HR.est$HR))

 #Parameter R-hats
 HR.Rhat.vec<-c(HR.Rhat.vec, GP.summary$Rhat[rownames(GP.summary)=='HR'])

 #Parameter N_eff
 HR.N_eff.vec<-c(HR.N_eff.vec, GP.summary$n_eff[rownames(GP.summary)=='HR'])

 #Getting a vector of original value rmssd's
 IBI.rmssd.15<-c(IBI.rmssd.15,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.rmssd.30<-c(IBI.rmssd.30,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.rmssd.45<-c(IBI.rmssd.45,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-22.5 &

IBI.orig.time<impute.UB.temp+22.5]))
 IBI.rmssd.60<-c(IBI.rmssd.60,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))

 #Getting a vector of mean replacement rmssd's
 IBI.MR.rmssd.15<-c(IBI.MR.rmssd.15,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.MR.rmssd.30<-c(IBI.MR.rmssd.30,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.MR.rmssd.45<-c(IBI.MR.rmssd.45,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-22.5 &
 IBI.orig.time<impute.UB.temp+22.5]))
 IBI.MR.rmssd.60<-c(IBI.MR.rmssd.60,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))

 #Getting a vector of hotdeck replacement rmssd's
 IBI.HD.rmssd.15<-c(IBI.HD.rmssd.15,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.HD.rmssd.30<-c(IBI.HD.rmssd.30,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.HD.rmssd.45<-c(IBI.HD.rmssd.45,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-22.5 &

IBI.orig.time<impute.UB.temp+22.5]))
 IBI.HD.rmssd.60<-c(IBI.HD.rmssd.60,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))
 }
 }
 }
 }

195

 }
 }
 }
}

save(list = ls(),
 file = paste0(out.folder, '/', paste('GP_2', Sys.time(), n.sims, sep = '_'), '.RData'))

Appendix D.3 Re-sampling Code for Gaussian Process Model Imputation Model 3

#Ensuring random starts for two different threads on same computer...
set.seed(as.numeric(Sys.time()))

#Original Processing:

dat.time.orig<-read.csv('/home/mbarsted/Dropbox/Dissertation/Chapter
4/Sim_data_3_b/Raw_coded.csv',
 stringsAsFactors = F)

#cleaning up extra rows
dat.time.orig<-dat.time.orig[-91:-nrow(dat.time.orig),]

#Taking only cases with at least 180 continuous seconds worth of data:
dat.time.orig<-dat.time.orig[dat.time.orig$Window_Length>=180,]

table(dat.time.orig$Population) #not bad - about 50/50
#40 sections of adult data
#39 sections of child data

#Converting "Adult" to "adult" and "Child" to "Child"
dat.time.orig$Population<-ifelse(dat.time.orig$Population=='Adult', 'adult', 'child')

wd<-'/home/mbarsted/Dropbox/Dissertation/Chapter 4/Sim_data_3_b'

#Bringing in file information worksheet
file_info<-read.csv(paste0(wd, '/Physio_Tracking - Sheet1.csv'), stringsAsFactors = F)

#Converting ID to common structure:
file_info$ID<-substr(file_info$Video_1, start=1, stop=6)

#Task timing file
task.time<-read.table(paste0(wd, '/Timing_File_forVizEdit.txt'),
 header = T, sep = '\t')
colnames(task.time)[1]<-'ID'

#Creating a test case folder - will run five imputations under each condition on 5 different
files:
#All test files will be with adult files.
data.folder<-paste0(wd, '/Good_3min')

file.names<-list.files(data.folder)

#Getting appropriate timing values for sections of "good" data
DF.segment<-merge(dat.time.orig, task.time[,1:2], by='ID')

#Will not be able to use case 051_T2 as there appears to be a task/timing issue there (loses 1
child case)
DF.segment<-DF.segment[DF.segment$ID!="051_T2",]
DF.segment$Start.adj<-DF.segment$Start+DF.segment$Video
DF.segment$Stop.adj<-DF.segment$Stop+DF.segment$Video
DF.segment$time.min<-DF.segment$Start.adj+31
DF.segment$time.max<-DF.segment$Stop.adj-31

DF.segment<-merge(DF.segment, file_info[,c(1,14:17)], by='ID')

196

#Functions for identifying heart beats
#===
#Function 1 - Finding Peakings Using Specified bandwidth:
findpeaks <- function (x, m = 3){
 shape <- diff(sign(diff(x, na.pad = FALSE)))
 pks <- sapply(which(shape < 0), FUN = function(i){
 z <- i - m + 1
 z <- ifelse(z > 0, z, 1)
 w <- i + m + 1
 w <- ifelse(w < length(x), w, length(x))
 if(all(x[c(z : i, (i + 2) : w)] <= x[i + 1])) return(i + 1) else return(numeric(0))
 })
 pks <- unlist(pks)
 pks
}
#===
#Function 2 - Summing IBIs from Raw PPG file:
time.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], x[i]-x[i-1])
 }
 return(Z)
}
#===
#Function 2b - Summing Time from IBIs
IBI.sum<-function(x){
 Z<-rep(NA, length(x))
 for(i in 1:length(x)){
 Z[i]<-sum(x[1:i])
 }
 return(Z)
}
#===
#Function 3 - Iterative function for getting IBIs
iter.IBI<-function(x, ds=2000){
 #browser()
 require(psych)
 s<-round(seq(round(ds/50), round(ds/2), length.out = 200))
 Z<-data.frame(rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)),
 rep(NA, length(s)))
 for(i in 1:length(s)){
 IBI<-findpeaks(x, s[i])
 time<-time.sum(IBI)/ds
 Z[i,1]<-s[i]
 Z[i,2]<-sd(time)
 Z[i,3]<-max(time)-min(time)
 Z[i,4]<-rmssd(time)
 Z[i,5]<-mean(acf(time, lag.max = length(time)/20, plot = F)$acf)
 Z[i,6]<-s[i]/ds
 }
 colnames(Z)<-c('BW', 'SD', 'Range', 'RMSSD', 'AC', 'BW(s)')
 Z<-Z[order(Z$RMSSD, decreasing = F),]
 IBI.fin<-findpeaks(x, m=Z[1,1])-1
 IBI.fin<-IBI.fin/ds
 IBI.done<-time.sum(IBI.fin)
 IBI.comp<-list(IBI.done, Z)
 names(IBI.comp)<-c('IBI.done', 'Z')
 return(IBI.comp)
}
#===
#Function 4 - Obtaining Time Values for IBI
sum.rev<-function(x){
 Z<-rep(NA, length(x))

197

 for(i in 1:length(x)){
 Z[i]<-ifelse(i==1, x[i], sum(x[1:(i-1)])+x[i])
 }
 return(Z)
}

###+++
#setting up models:
chains<-2
impute.min<-2
impute.max<-8
warmup<-c(2000)
n.iter<-c(2500)
Data.sample.Hz<-c(2000)
impute.sample.Hz<-c(125, 250)
GP.sample.Hz<-c(4, 8, 12)
impute.fac<-c(1,2,3)

#Going to need to bring in header information
#For now all test cases have 15 rows of header information:

library(ggplot2)
library(signal)
library(psych)
library(bayesplot)
library(MCMCvis)
library(rstan)
library(rstanarm)
library(astsa)
library(benchmarkme)
options(mc.cores=parallel::detectCores())
rstan_options(auto_write = TRUE)
#Run the complete simulation from here
#Basing this on 5 simulations each to start:
n.sims<-5

#Basic simulation vectors
ID.vec<-vector()
impute.ID<-vector()
CPU.vec<-vector()
Cores.vec<-vector()
RAM.vec<-vector()
pop.vec<-vector()
start.vec<-vector()
stop.vec<-vector()
IBI.rmssd.15<-vector()
IBI.rmssd.30<-vector()
IBI.rmssd.45<-vector()
IBI.rmssd.60<-vector()
IBI.MR.rmssd.15<-vector()
IBI.MR.rmssd.30<-vector()
IBI.MR.rmssd.45<-vector()
IBI.MR.rmssd.60<-vector()
IBI.HD.rmssd.15<-vector()
IBI.HD.rmssd.30<-vector()
IBI.HD.rmssd.45<-vector()
IBI.HD.rmssd.60<-vector()
IBI.GP.rmssd.15<-vector()
IBI.GP.rmssd.30<-vector()
IBI.GP.rmssd.45<-vector()
IBI.GP.rmssd.60<-vector()
N.IBIs.vec<-vector()
runtime<-vector()
warmup.vec<-vector()
iter.vec<-vector()
Hz.vec<-vector()
impute.Hz.vec<-vector()
GP.Hz.vec<-vector()

198

impute.fac.vec<-vector()
impute.start<-vector()
impute.end<-vector()
impute.tot<-vector()

#Parameter Means
HR.mean.vec<-vector()

#Parameter sd's
HR.SD.vec<-vector()

#Parameter R-hats
HR.Rhat.vec<-vector()

#Parameter N_eff
HR.N_eff.vec<-vector()

#Getting ML Convergence test
a1.ML.conv.vec<-vector()
a2.ML.conv.vec<-vector()
a3.ML.conv.vec<-vector()
a4.ML.conv.vec<-vector()

r1.ML.conv.vec<-vector()
r2.ML.conv.vec<-vector()
r3.ML.conv.vec<-vector()
r4.ML.conv.vec<-vector()
r5.ML.conv.vec<-vector()
r6.ML.conv.vec<-vector()
r7.ML.conv.vec<-vector()

Resp.ML.conv.vec<-vector()

#Creating folder structure to allow for quick saving of Files
out.folder<-paste0(wd, '/Output')
IBI.orig.folder<-paste0(out.folder, '/IBI_Files/Original')
IBI.MR.folder<-paste0(out.folder, '/IBI_Files/Mean_Replacement')
IBI.HD.folder<-paste0(out.folder, '/IBI_Files/Hot_Deck')
IBI.impute.folder<-paste0(out.folder, '/IBI_Files/Imputed')
Peak.summary.folder<-paste0(out.folder, '/Peak_Detection_Summaries')
graphics.folder<-paste0(out.folder, '/Graphics')
Bayes.graphics<-paste0(graphics.folder, '/Bayes_Graphics')
model.folder<-paste0(out.folder, '/Model_Summaries')
diagnostics.folder<-paste0(out.folder, '/Diagnostics')

#Main simulation program:
for(i in 1:n.sims){
 #browser()
 #Getting the specifics for each run:
 impute.window.temp<-runif(1, impute.min, impute.max)
 row.select.temp<-sample(x=1:nrow(DF.segment), size = 1)

 #Obtaining temporary dataset
 dat.temp<-DF.segment[row.select.temp,]
 header.temp<-ifelse(dat.temp$Population=='child', dat.temp$Child_Header, dat.temp$Parent_Header)
 col.select.temp<-ifelse(dat.temp$Population=='child', dat.temp$Child_Column,
dat.temp$Parent_Column)

 #Selecting imputation boundaries
 impute.LB.temp<-runif(1, dat.temp$time.min, dat.temp$time.max)
 impute.UB.temp<-impute.LB.temp+impute.window.temp

 #getting PPG data
 PPG<-read.table(paste0(data.folder, '/', dat.temp$ID, '.txt'),
 skip = header.temp,
 header = F,
 sep = '\t'
)

199

 PPG<-PPG[,col.select.temp]

 PPG<-data.frame(PPG,
 Time = seq(from = 0, by = .0005, length.out = length(PPG))
)

 #Selecting target window for the case
 PPG.temp<-PPG[PPG$Time>=dat.temp$Start.adj & PPG$Time<=dat.temp$Stop.adj,]

 #Cleaning signal - de-spiking and smoothing heart rate
 PPG.temp$PPG<-as.numeric(smooth(PPG.temp$PPG))
 PPG.temp$PPG<-smooth.spline(PPG.temp$PPG, nknots = 10000)$y
 PPG.temp$PPG<-PPG.temp$PPG-predict(lm(PPG~Time, data = PPG.temp))

 #Obtaining original IBI values for section:
 IBI.orig.temp<-iter.IBI(PPG.temp$PPG, ds=2000)

 write.table(round(IBI.orig.temp$IBI.done, digits = 4),
 paste0(IBI.orig.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 write.table(round(head(IBI.orig.temp$Z, n=20), digits = 3),
 paste0(Peak.summary.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'original',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'
),
 sep = '\t',
 row.names = F
)

 #Mean replacement strategy - Will replace the number of IBIs in the affected range with mean
values
 #Step 1 - Restoring accurate timing file

 IBI.orig.time<-sum.rev(IBI.orig.temp$IBI.done)+dat.temp$Start.adj

 #Running very simple mean imputation (not accounting for time-series nature of the data)
 IBI.mean.replace<-IBI.orig.temp$IBI.done
 IBI.mean.replace[IBI.orig.time>impute.LB.temp &
 IBI.orig.time<impute.UB.temp]<-rep(mean(IBI.orig.temp$IBI.done))

 #removing first and last IBI value (to make more equivalent comparison with imputed data set)
 write.table(round(IBI.mean.replace[c(-1, -length(IBI.mean.replace))], digits = 4),
 paste0(IBI.MR.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'Mean_replace',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),

200

 row.names = F
)

 #Running hot deck imputation (does not account for time-series nature of the data)
 IBI.sample.vals<-IBI.orig.temp$IBI.done[IBI.orig.time<impute.LB.temp |
IBI.orig.time>impute.UB.temp]
 IBI.hotdeck.replace<-IBI.orig.temp$IBI.done
 N.IBIs<-length(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp & IBI.orig.time<impute.UB.temp])
 IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp & IBI.orig.time<impute.UB.temp]<-
sample(x=IBI.sample.vals,
 size =
N.IBIs,
 replace
= T)
 write.table(round(IBI.hotdeck.replace[c(-1, -length(IBI.hotdeck.replace))], digits = 4),
 paste0(IBI.HD.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 'HotDeck_replace',
 dat.temp$Start,
 dat.temp$Stop,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 for(j in 1:length(chains)){
 chain.temp<-chains[j]
 for(k in 1:length(warmup)){
 warmup.temp<-warmup[k]
 n.iter.temp<-n.iter[k]
 for(l in 1:length(Data.sample.Hz)){
 Hz.temp<-Data.sample.Hz[l]
 for(m in 1:length(impute.sample.Hz)){
 Hz.impute.temp<-impute.sample.Hz[m]
 for(n in 1:length(GP.sample.Hz)){
 Hz.GP.temp<-GP.sample.Hz[n]
 for(o in 1:length(impute.fac)){
 impute.fac.temp<-impute.fac[o]

 #Downsampling (if appropriate)
 select.int<-2000/Hz.temp
 PPG.impute<-PPG.temp[seq(1, nrow(PPG.temp), select.int),]
 IBI.impute<-iter.IBI(PPG.impute$PPG, ds=Hz.temp)

 #Getting some priors for the model
 mu_HP<-mean(1/IBI.impute$IBI.done[c(-1,-length(IBI.impute$IBI.done))], na.rm = T)
 sigma_HP<-sd(1/IBI.impute$IBI.done[c(-1,-length(IBI.impute$IBI.done))], na.rm = T)

 #Estimating Respiration parameter child
 if(dat.temp$Population == 'child'){
 spec<-mvspec(PPG.temp,
 spans = c(7,7),
 taper=.1,
 demean = T,
 log='no',
 plot = F)
 min.R<-20/60/Hz.temp
 max.R<-30/60/Hz.temp

 spec.trunc<-data.frame(freq=spec$freq[spec$freq>=min.R&spec$freq<=max.R],
 spec=spec$spec[spec$freq>=min.R&spec$freq<=max.R])
 spec.trunc$prob<-spec.trunc$spec/sum(spec.trunc$spec)
 tmp.dist<-sample(spec.trunc$freq, size = 10000, replace = T, prob =
spec.trunc$prob)*Hz.temp
 mu_R<-mean(tmp.dist)
 sigma_R<-sd(tmp.dist)

201

 }

 #Estimating Respiration parameter adult
 if(dat.temp$Population == 'adult'){
 spec<-mvspec(PPG.temp,
 spans = c(7,7),
 taper=.1,
 demean = T,
 log='no',
 plot = F)
 min.R<-12/60/Hz.temp
 max.R<-20/60/Hz.temp

 spec.trunc<-data.frame(freq=spec$freq[spec$freq>=min.R&spec$freq<=max.R],
 spec=spec$spec[spec$freq>=min.R&spec$freq<=max.R])
 spec.trunc$prob<-spec.trunc$spec/sum(spec.trunc$spec)
 tmp.dist<-sample(spec.trunc$freq, size = 10000, replace = T, prob =
spec.trunc$prob)*Hz.temp
 mu_R<-mean(tmp.dist)
 sigma_R<-sd(tmp.dist)
 }

 init.list<-list()
 for(x in 1:chain.temp){
 init.list[[x]]<-list(mu_HR = mu_HP,
 sigma_HR = sigma_HP,
 mu_R = mu_R,
 sigma_R = sigma_R)
 }

 if(Hz.temp>=Hz.impute.temp){
 #First selecting a series of time values to impute back in at the appropriate
sampling rate
 select.int2<-Hz.temp/Hz.impute.temp
 PPG.impute2<-PPG.impute[seq(1, nrow(PPG.impute), select.int2),]
 PPG.impute.pred<-PPG.impute2[PPG.impute2$Time>impute.LB.temp &
PPG.impute2$Time<impute.UB.temp,]

 #Getting what will be Prediction values:
 Xp<-PPG.impute.pred$Time
 N2<-length(PPG.impute.pred$Time)

 #Acquiring "good data"
 min.TIME2<-min(Xp)
 max.TIME2<-max(Xp)
 time.span<-max.TIME2-min.TIME2
 Y.vals<-rbind(PPG.impute2[PPG.impute2$Time>min.TIME2-impute.fac.temp*time.span &
 PPG.impute2$Time<min.TIME2,],
 PPG.impute2[PPG.impute2$Time>max.TIME2 &

PPG.impute2$Time<max.TIME2+impute.fac.temp*time.span,])
 Y.vals<-na.omit(Y.vals)
 tot.Y.vals<-length(Y.vals[,1])
 sel.Y.vals<-round(seq(1, tot.Y.vals, length.out =
round(tot.Y.vals/Hz.impute.temp*Hz.GP.temp)))
 sel.Y.vals<-unique(sel.Y.vals)
 Y<-Y.vals$PPG[sel.Y.vals]
 X<-Y.vals$Time[sel.Y.vals]
 N1<-length(X)

 #Running Model - there is no need for respiration priors
 dat<-list(N1=N1,
 N2=N2,
 Xp=Xp,
 X=X,
 Y=Y,
 mu_HR=mu_HP,
 sigma_HR=sigma_HP,
 mu_R = mu_R,

202

 sigma_R = sigma_R
)

 #Obtaining estimates for hyper-parameters using ML approach
 opt_model<-stan_model(file=paste0(wd, '/Stan_code/GP_3_opt.stan'))

 #need to find some way to assess convergence...
 print('Obtaining first ML estimate for hyperparameters')
 opt_fit1<-NULL
 attempt<-1
 while(is.null(opt_fit1) & attempt <=15){
 print(paste('Convergence attempt', attempt, 'out of 15'))
 attempt<- attempt + 1
 try(
 opt_fit1<-optimizing(opt_model,
 data=dat,
 init=list(mu_HR = mu_HP, mu_R = mu_R),
 seed=sample(1:5000, size = 1), iter = 10000)
)
 }

 print('Obtaining second ML estimate for hyperparameters')
 opt_fit2<-NULL
 attempt<-1
 while(is.null(opt_fit2) & attempt <=15){
 print(paste('Convergence attempt', attempt, 'out of 15'))
 attempt<- attempt + 1
 try(
 opt_fit2<-optimizing(opt_model,
 data=dat,
 init=list(mu_HR = mu_HP, mu_R = mu_R),
 seed=sample(1:5000, size = 1), iter = 10000)
)
 }

 if(!is.null(opt_fit1)){
 alpha1.1 <- opt_fit1$par['a1']
 alpha2.1 <- opt_fit1$par['a2']
 alpha3.1 <- opt_fit1$par['a3']
 alpha4.1 <- opt_fit1$par['a4']
 rho1.1 <- opt_fit1$par['r1']
 rho2.1 <- opt_fit1$par['r2']
 rho3.1 <- opt_fit1$par['r3']
 rho4.1 <- opt_fit1$par['r4']
 rho5.1 <- opt_fit1$par['r5']
 rho6.1 <- opt_fit1$par['r6']
 rho7.1 <- opt_fit1$par['r7']
 Resp.1 <- opt_fit1$par['R']
 }

 if(!is.null(opt_fit2)){
 alpha1.2 <- opt_fit2$par['a1']
 alpha2.2 <- opt_fit2$par['a2']
 alpha3.2 <- opt_fit2$par['a3']
 alpha4.2 <- opt_fit2$par['a4']
 rho1.2 <- opt_fit2$par['r1']
 rho2.2 <- opt_fit2$par['r2']
 rho3.2 <- opt_fit2$par['r3']
 rho4.2 <- opt_fit2$par['r4']
 rho5.2 <- opt_fit2$par['r5']
 rho6.2 <- opt_fit2$par['r6']
 rho7.2 <- opt_fit2$par['r7']
 Resp.2 <- opt_fit2$par['R']
 }

 if(!is.null(opt_fit1) & !is.null(opt_fit2)){
 #Simple Alpha convergence check
 a1.ML.conv.vec<-c(a1.ML.conv.vec, abs(alpha1.1-alpha1.2))
 a2.ML.conv.vec<-c(a2.ML.conv.vec, abs(alpha2.1-alpha2.2))

203

 a3.ML.conv.vec<-c(a3.ML.conv.vec, abs(alpha3.1-alpha3.2))
 a4.ML.conv.vec<-c(a4.ML.conv.vec, abs(alpha4.1-alpha4.2))

 #Simple rho covergence check
 r1.ML.conv.vec<-c(r1.ML.conv.vec, abs(rho1.1-rho1.2))
 r2.ML.conv.vec<-c(r2.ML.conv.vec, abs(rho2.1-rho2.2))
 r3.ML.conv.vec<-c(r3.ML.conv.vec, abs(rho3.1-rho3.2))
 r4.ML.conv.vec<-c(r4.ML.conv.vec, abs(rho4.1-rho4.2))
 r5.ML.conv.vec<-c(r5.ML.conv.vec, abs(rho5.1-rho5.2))
 r6.ML.conv.vec<-c(r6.ML.conv.vec, abs(rho6.1-rho6.2))
 r7.ML.conv.vec<-c(r7.ML.conv.vec, abs(rho7.1-rho7.2))

 #Respiration Convergence check
 Resp.ML.conv.vec<-c(Resp.ML.conv.vec, abs(Resp.1-Resp.2))
 }

 else{
 #Simple Alpha convergence check
 a1.ML.conv.vec<-c(a1.ML.conv.vec, NA)
 a2.ML.conv.vec<-c(a2.ML.conv.vec, NA)
 a3.ML.conv.vec<-c(a3.ML.conv.vec, NA)
 a4.ML.conv.vec<-c(a4.ML.conv.vec, NA)

 #Simple rho covergence check
 r1.ML.conv.vec<-c(r1.ML.conv.vec, NA)
 r2.ML.conv.vec<-c(r2.ML.conv.vec, NA)
 r3.ML.conv.vec<-c(r3.ML.conv.vec, NA)
 r4.ML.conv.vec<-c(r4.ML.conv.vec, NA)
 r5.ML.conv.vec<-c(r5.ML.conv.vec, NA)
 r6.ML.conv.vec<-c(r6.ML.conv.vec, NA)
 r7.ML.conv.vec<-c(r7.ML.conv.vec, NA)

 #Respiration convergence
 Resp.ML.conv.vec<-c(Resp.ML.conv.vec, NA)
 }

 if(is.null(opt_fit1) & !is.null(opt_fit2)){
 alpha1.1<-alpha1.2
 alpha2.1<-alpha2.2
 alpha3.1<-alpha3.2
 alpha4.1<-alpha4.2

 rho1.1<-rho1.2
 rho2.1<-rho2.2
 rho3.1<-rho3.2
 rho4.1<-rho4.2
 rho5.1<-rho5.2
 rho6.1<-rho6.2
 rho7.1<-rho7.2

 Resp.1<-Resp.2
 }

 pars.to.monitor<-c('HR', 'Ypred')
 start.time.temp<-Sys.time()

 start.time.temp<-Sys.time()

 dat.opt<-list(N1=N1,
 N2=N2,
 Xp=Xp,
 X=X,
 Y=Y,
 mu_HR=mu_HP,
 sigma_HR=sigma_HP,
 mu_R = mu_R,
 sigma_R = sigma_R,
 a1 = alpha1.1,
 a2 = alpha2.1,

204

 a3 = alpha3.1,
 a4 = alpha4.1,
 r1 = rho1.1,
 r2 = rho2.1,
 r3 = rho3.1,
 r4 = rho4.1,
 r5 = rho5.1,
 r6 = rho6.1,
 r7 = rho7.1,
 R = Resp.1
)

 fit.stan<-stan(file=paste0(wd, '/Stan_code/GP_3_b.stan'),
 data = dat.opt,
 init = init.list,
 warmup = warmup.temp,
 iter = n.iter.temp,
 refresh=100,
 chains = chain.temp,
 pars = pars.to.monitor,
 control = list(adapt_delta = .95,
 max_treedepth = 15)
)

 run_time<-round(Sys.time()-start.time.temp, digits = 3)
 units(run_time)<-'mins'
 run_time<-as.numeric(run_time)

 y_pred<-rstan::extract(fit.stan, 'Ypred')
 PPG.new<-colMeans(y_pred$Ypred)
 PPG.DF.new<-data.frame(PPG = PPG.new,
 Time = Xp)

 GP.summary<-as.data.frame(summary(fit.stan, pars = pars.to.monitor[-
length(pars.to.monitor)],
 probs = c(.1, .9))$summary)

 write.table(round(GP.summary, digits = 3),
 paste0(model.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 'GP_impute',
 round(impute.LB.temp, digits = 2),
 round(impute.UB.temp, digits = 2),
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = T,
 sep='\t'
)

 g1<-ggplot()+
 geom_line(data=PPG.DF.new, aes(x=Time, y = PPG), color = 'red', lty='dashed')+
 geom_line(data=PPG.impute.pred, aes(x=Time, y=PPG), color = 'black')+
 ggtitle(paste(dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

 ggsave(filename = paste0(graphics.folder, paste('/',

205

 dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g1,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

 g2<-traceplot(fit.stan, pars='HR', inc_warmup=T)+
 ggtitle(paste('HR param', dat.temp$ID, dat.temp$Population, dat.temp$Segment,
 'File Hz =', Hz.temp, 'GP Dataset Hz =', Hz.impute.temp,
 'Model Sampling Rate =', Hz.GP.temp, '\n', 'Chains =', chain.temp,
 'Warmup =', warmup.temp, 'Iter =', n.iter.temp))

 ggsave(filename = paste0(Bayes.graphics, paste('/',
 dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,
 round(impute.LB.temp, digits = 2),
 sep = '_'), '.png'),
 plot = g2,
 width = 11,
 height = 8,
 units = 'in',
 dpi = 300,
 device = 'png')

 PPG.impute.fin<-PPG.impute2
 PPG.impute.fin$PPG[PPG.impute.fin$Time>impute.LB.temp &
 PPG.impute.fin$Time<impute.UB.temp]<-PPG.new

 IBI.GP.impute.temp<-iter.IBI(PPG.impute.fin$PPG, ds=Hz.impute.temp)$IBI.done
 IBI.GP.impute.time<-sum.rev(IBI.GP.impute.temp)+dat.temp$Start.adj
 write.table(round(IBI.GP.impute.temp[c(-1, -length(IBI.GP.impute.temp))], digits =
4),
 paste0(IBI.impute.folder,
 '/',
 paste(dat.temp$ID,
 dat.temp$Population,
 dat.temp$Segment,
 'GP_impute',
 round(impute.LB.temp, digits = 2),
 round(impute.UB.temp, digits = 2),
 Hz.temp,
 Hz.impute.temp,
 Hz.GP.temp,
 impute.fac.temp,
 chain.temp,
 warmup.temp,
 n.iter.temp,

206

 round(impute.LB.temp, digits = 2),
 sep = '_'),
 '.txt'),
 row.names = F
)

 HR.est<-rstan::extract(fit.stan, 'HR')

 #Basic simulation vectors
 ID.vec<-c(ID.vec, dat.temp$ID)
 impute.ID<-c(impute.ID, paste('Segment', i, sep = '_'))
 CPU.vec<-c(CPU.vec, benchmarkme::get_cpu()$model_name)
 Cores.vec<-c(Cores.vec, parallel::detectCores())
 RAM.vec<-c(RAM.vec, paste(round(benchmarkme::get_ram()/1073741824), 'GB'))
 pop.vec<-c(pop.vec, dat.temp$Population)
 N.IBIs.vec<-c(N.IBIs.vec, N.IBIs)
 start.vec<-c(start.vec, dat.temp$Start)
 stop.vec<-c(stop.vec, dat.temp$Stop)
 IBI.GP.rmssd.15<-c(IBI.GP.rmssd.15,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-7.5
&

IBI.GP.impute.time<impute.UB.temp+7.5]))
 IBI.GP.rmssd.30<-c(IBI.GP.rmssd.30,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-15 &

IBI.GP.impute.time<impute.UB.temp+15]))
 IBI.GP.rmssd.45<-c(IBI.GP.rmssd.45,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-22.5
&

IBI.GP.impute.time<impute.UB.temp+22.5]))
 IBI.GP.rmssd.60<-c(IBI.GP.rmssd.60,
 rmssd(IBI.GP.impute.temp[IBI.GP.impute.time>impute.LB.temp-30 &

IBI.GP.impute.time<impute.UB.temp+30]))
 runtime<-c(runtime, run_time)
 warmup.vec<-c(warmup.vec, warmup.temp)
 iter.vec<-c(iter.vec, n.iter.temp)
 Hz.vec<-c(Hz.vec, Hz.temp)
 impute.Hz.vec<-c(impute.Hz.vec, Hz.impute.temp)
 GP.Hz.vec<-c(GP.Hz.vec, Hz.GP.temp)
 impute.fac.vec<-c(impute.fac.vec, impute.fac.temp)
 impute.start<-c(impute.start, min.TIME2)
 impute.end<-c(impute.end, max.TIME2)
 impute.tot<-c(impute.tot, time.span)

 #Parameter Means
 HR.mean.vec<-c(HR.mean.vec, mean(HR.est$HR))

 #Parameter sd's
 HR.SD.vec<-c(HR.SD.vec, sd(HR.est$HR))

 #Parameter R-hats
 HR.Rhat.vec<-c(HR.Rhat.vec, GP.summary$Rhat[rownames(GP.summary)=='HR'])

 #Parameter N_eff
 HR.N_eff.vec<-c(HR.N_eff.vec, GP.summary$n_eff[rownames(GP.summary)=='HR'])

 #Getting a vector of original value rmssd's
 IBI.rmssd.15<-c(IBI.rmssd.15,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.rmssd.30<-c(IBI.rmssd.30,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.rmssd.45<-c(IBI.rmssd.45,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-22.5 &

207

IBI.orig.time<impute.UB.temp+22.5]))
 IBI.rmssd.60<-c(IBI.rmssd.60,
 rmssd(IBI.orig.temp$IBI.done[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))

 #Getting a vector of mean replacement rmssd's
 IBI.MR.rmssd.15<-c(IBI.MR.rmssd.15,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.MR.rmssd.30<-c(IBI.MR.rmssd.30,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.MR.rmssd.45<-c(IBI.MR.rmssd.45,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-22.5 &
 IBI.orig.time<impute.UB.temp+22.5]))
 IBI.MR.rmssd.60<-c(IBI.MR.rmssd.60,
 rmssd(IBI.mean.replace[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))

 #Getting a vector of hotdeck replacement rmssd's
 IBI.HD.rmssd.15<-c(IBI.HD.rmssd.15,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-7.5 &
 IBI.orig.time<impute.UB.temp+7.5]))
 IBI.HD.rmssd.30<-c(IBI.HD.rmssd.30,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-15 &
 IBI.orig.time<impute.UB.temp+15]))
 IBI.HD.rmssd.45<-c(IBI.HD.rmssd.45,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-22.5 &

IBI.orig.time<impute.UB.temp+22.5]))
 IBI.HD.rmssd.60<-c(IBI.HD.rmssd.60,
 rmssd(IBI.hotdeck.replace[IBI.orig.time>impute.LB.temp-30 &
 IBI.orig.time<impute.UB.temp+30]))
 }
 }
 }
 }
 }
 }
 }
}

save(list = ls(),
 file = paste0(out.folder, '/', paste('GP_3', Sys.time(), n.sims, sep = '_'), '.RData'))

208

References

Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate

variability: A review. Medical and Biological Engineering and Computing, 44(12),

1031–1051. https://doi.org/10.1007/s11517-006-0119-0

Adenauer, H., Catani, C., Keil, J., Aichinger, H., & Neuner, F. (2010). Is freezing an

adaptive reaction to threat? Evidence from heart rate reactivity to emotional pictures

in victims of war and torture. Psychophysiology, 47, 315–322.

https://doi.org/10.1111/j.1469-8986.2009.00940.x

Akar, S. A., Kara, S., Latifoǧlu, F., & Bilgiç, V. (2013). Spectral analysis of

photoplethysmographic signals: The importance of preprocessing. Biomedical

Signal Processing and Control, 8(1), 16–22.

https://doi.org/10.1016/j.bspc.2012.04.002

Allen, J. (2007). Photoplethysmography and its application in clinical physiological

measurement. Physiological Measurement, 28(3), R1–R39.

https://doi.org/10.1088/0967-3334/28/3/R01

Asendorpf, J. B. (1990). Development of inhibition during childhood: Evidence for

situational specificity and a two-factor model. Developmental Psychology, 26, 721–

730. https://doi.org/10.1037//0012-1649.26.5.721

Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as

a marker of emotion regulation in healthy adults: A review. Biological Psychology.

https://doi.org/10.1016/j.biopsycho.2017.10.008

Barbour, A. J., & Parker, R. L. (2014). psd: Adaptive, sine multitaper power spectral

density estimation for R. Computers & Geosciences, 63, 1–8.

209

https://doi.org/10.1016/j.cageo.2013.09.015

Barstead, M. G. (2018). IBI VizEdit v.1.2-beta: An RShiny application.

https://doi.org/10.5281/zenodo.1209474

Barstead, M. G., Danko, C. M., Chronis-Tuscano, A., O’Brien, K. A., Coplan, R. J., &

Rubin, K. H. (2018). Generalization of an early intervention for inhibited

preschoolers to the classroom setting. Journal of Child and Family Studies, 27,

2943–2953. https://doi.org/10.1007/s10826-018-1142-0

Bayer, J. K., Rapee, R. M., Hiscock, H., Ukoumunne, O. C., Mihalopoulos, C., Clifford,

S., & Wake, M. (2011). The Cool Little Kids randomised controlled trial:

Population-level early prevention for anxiety disorders. BMC Public Health, 11, 1–

10. https://doi.org/10.1186/1471-2458-11-11

Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: toward

an integrated model of autonomic nervous system functioning in psychopathology.

Development and Psychopathology, 13(2), 183–214.

https://doi.org/10.1017/S0954579401002012

Beauchaine, T. P. (2015). Respiratory sinus arrhythmia: A transdiagnostic biomarker of

emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 43–

47. https://doi.org/10.1016/j.copsyc.2015.01.017

Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic

biomarker of psychopathology. International Journal of Psychophysiology, 98(2),

338–350. https://doi.org/10.1016/j.ijpsycho.2015.08.004

Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Marek,

M., … van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and

210

interpretive caveats. Psychophysiology, 34(6), 623–648.

https://doi.org/10.1111/j.1469-8986.1997.tb02140.x

Berntson, G. G., Quigley, K. S., Jang, J. F., & Boysen, S. T. (1990). An approach to

artifact identification: Application to heart period data. Psychophysiology, 27(5),

586–598. https://doi.org/10.1111/j.1469-8986.1990.tb01982.x

Berntson, G. G., & Stowell, J. R. (1998). ECG artifacts and heart period variability:

Don’t miss a beat! Psychophysiology, 35(1), 127–132.

https://doi.org/10.1017/S0048577298001541

Biopac Systems. (2016). AcqKnowledge. Goleta, CA: Biopac Systems, Inc.

Biopac Systems. (2017). Application Note 109: 1-, 3-, 6-, and 12-Lead ECG. Goleta, CA:

Biopac Systems, Inc.

Biopac Systems. (2018). Bionomadix Wireless PPG and EDA Amplifier. Retrieved from

https://www.biopac.com/product/bionomadix-ppg-and-eda-amplifier/#product-tabs

Bishop, G., Spence, S. H., & Mcdonald, C. (2003). Can parents and teachers provide a

reliable and valid report of behavioral inhibition? Child Development, 74, 1899–

1917. https://doi.org/10.1046/j.1467-8624.2003.00645.x

Bolanos, M., Nazeran, H., & Haltiwanger, E. (2006). Comparison of heart rate variability

signal features derived from electrocardiography and photoplethysmography in

healthy individuals. In 2006 International Conference of the IEEE Engineering in

Medicine and Biology Society (pp. 4289–4294). IEEE.

https://doi.org/10.1109/IEMBS.2006.260607

Boyce, W. T., Quas, J., Alkon, A., Smider, N. A., Essex, M. J., & Kupfer, D. J. (2001).

Autonomic reactivity and psychopathology in middle childhood. British Journal of

211

Psychiatry, 179, 144–150. https://doi.org/10.1192/bjp.179.2.144

Brain-Body Center. (2007). CardioEdit software. University of Chicago.

Brooker, R. J., & Buss, K. A. (2010). Dynamic measures of RSA predict distress and

regulation in toddlers. Developmental Psychobiology, 52, 372–382.

https://doi.org/10.1002/dev.20432

Brosschot, J. F., & Thayer, J. F. (2003). Heart rate response is longer after negative

emotions than after positive emotions. International Journal of Psychophysiology,

50, 181–187. https://doi.org/10.1016/S0167-8760(03)00146-6

Bürkner, P.-C. (2017). brms : An R Package for Bayesian Multilevel Models Using Stan.

Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01

Calkins, S. D. (1997). Cardiac vagal tone indices of temperamental reactivity and

behvioral regulation in young children. Developmental Psychobiology, 31(1990),

125–135.

Calkins, S. D., Fox, N. A., & Marshall, T. R. (1996). Behavioral and physiological

antecedents of inhibited and uninhibited behavior. Child Development, 67(2), 523–

540. https://doi.org/10.1111/j.1467-8624.1996.tb01749.x

Chida, Y., & Hamer, M. (2008). Chronic psychosocial factors and acute physiological

responses to laboratory-induced stress in healthy populations: A quantitative review

of 30 years of investigations. Psychological Bulletin, 134(6), 829–885.

https://doi.org/10.1037/a0013342

Chronis-Tuscano, A., Danko, C. M., Rubin, K. H., Coplan, R. J., & Novick, D. R. (2018).

Future Directions for Research on Early Intervention for Young Children at Risk for

Social Anxiety. Journal of Clinical Child and Adolescent Psychology.

212

https://doi.org/10.1080/15374416.2018.1426006

Chronis-Tuscano, A., Degnan, K. A., Pine, D. S., Perez-Edgar, K., Henderson, H. A.,

Diaz, Y., … Fox, N. A. (2009). Stable early maternal report of behavioral inhibition

predicts lifetime social anxiety disorder in adolescence. Journal of the American

Academy of Child and Adolescent Psychiatry, 48(9), 928–935.

https://doi.org/10.1097/CHI.0b013e3181ae09df

Chronis-Tuscano, A., Rubin, K. H., O’Brien, K. A., Coplan, R. J., Thomas, S. R.,

Dougherty, L. R., … Wimsatt, M. (2015). Preliminary evaluation of a multimodal

early intervention program for behaviorally inhibited preschoolers. Journal of

Consulting and Clinical Psychology, 83, 534–540. https://doi.org/10.1037/a0039043

Clauss, J. A., & Blackford, J. U. (2012). Behavioral inhibition and risk for developing

social anxiety disorder: A meta-analytic study. Journal of the American Academy of

Child and Adolescent Psychiatry, 51(10), 1066–1075.

https://doi.org/10.1016/j.jaac.2012.08.002

Couceiro, R., Carvalho, P., Paiva, R. P., Henriques, J., & Muehlsteff, J. (2012). Detection

of motion artifacts in photoplethysmographic signals based on time and period

domain analysis. In 2012 Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (pp. 2603–2606).

https://doi.org/10.1109/EMBC.2012.6346497

Denver, J. W., Reed, S. F., & Porges, S. W. (2007). Methodological issues in the

quantification of respiratory sinus arrhythmia. Biological Psychology, 74(2), 286–

294. https://doi.org/10.1016/j.biopsycho.2005.09.005

Doussard-Roosevelt, J. a, Montgomery, L. A., & Porges, S. W. (2003). Short-term

213

stability of physiological measures in kindergarten children: respiratory sinus

arrhythmia, heart period, and cortisol. Developmental Psychobiology, 43(3), 230–

242. https://doi.org/10.1002/dev.10136

El-Sheikh, M., & Buckhalt, J. A. (2005). Vagal regulation and emotional intensity predict

children’s sleep problems. Developmental Psychobiology, 46(4), 307–317.

https://doi.org/10.1002/dev.20066

Elgendi, M. (2012). On the analysis of fingertip photoplethysmogram signals. Current

Cardiology Reviews, 8(1), 14–25. https://doi.org/10.2174/157340312801215782

Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005).

Behavioral inhibition: linking biology and behavior within a developmental

framework. Annual Review of Psychology, 56, 235–262.

https://doi.org/10.1146/annurev.psych.55.090902.141532

Fox, N. A., Nichols, K. E., Henderson, H. A., Rubin, K. H., Schmidt, L. A., Hamer,

D., … Pine, D. S. (2005). Evidence for a Gene- Environment Interaction in

Predicting Behavioral Inhibition in Middle Childhood. Society, 16(12), 921–926.

Geisler, F. C. M., Vennewald, N., Kubiak, T., & Weber, H. (2010). The impact of heart

rate variability on subjective well-being is mediated by emotion regulation.

Personality and Individual Differences, 49(7), 723–728.

https://doi.org/10.1016/j.paid.2010.06.015

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian Data Analysis (3rd ed.). New York: CRC Press.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical

models. New York: Cambridge University Press.

214

Gentzler, A. L., Santucci, A. K., Kovacs, M., & Fox, N. A. (2009). Respiratory sinus

arrhythmia reactivity predicts emotion regulation and depressive symptoms in at-

risk and control children. Biological Psychology, 82(2), 156–163.

https://doi.org/10.1016/j.biopsycho.2009.07.002

Giardino, N. D., Lehrer, P. M., & Edelberg, R. (2002). Comparison of finger

plethysmograph to ECG in the measurement of heart rate variability.

Psychophysiology, 39(2), 246–253. https://doi.org/10.1017/S0048577202990049

Glenn, A. L., Lochman, J. E., Dishion, T., Powell, N. P., Boxmeyer, C., Kassing, F., …

Romero, D. (2018). Toward tailored interventions: Sympathetic and parasympathetic

functioning predicts responses to an intervention for conduct problems delivered in

two formats. Prevention Science. https://doi.org/10.1007/s11121-017-0859-0

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are

really needed? Some practical clarifications of multiple imputation theory.

Prevention Science, 8(3), 206–213. https://doi.org/10.1007/s11121-007-0070-9

Grippo, A. J., Lamb, D. G., Carter, C. S., & Porges, S. W. (2007). Social isolation disrupts

autonomic regulation of the heart and influences negative affective behaviors.

Biological Psychiatry, 62(10), 1162–1170.

https://doi.org/10.1016/j.biopsych.2007.04.011

Grund, S., Robitzsch, A., & Luedtke, O. (2018). mitml: Tools for multiple imputation in

multilevel modeling. Retrieved from https://cran.r-project.org/package=mitml

Guy, L., Souders, M., Bradstreet, L., Delussey, C., & Herringto, J. D. (2014). Brief

report: Emotion regulation and respiratory sinus arrhythmia in autism spectrum

disorder. Journal of Autism and Developmental Disorders, 44(10), 2614–2620.

215

https://doi.org/10.1007/s10803-014-2124-8

Haines, D. E. (2013). Fundamental neuroscience for basic and clinical applications (4th

ed.). Philadelphia, PA: Elsevier.

Haines, D. E., & Mihailoff, G. A. (2013). A synopsis of cranial nerves of the brainstem.

In D. E. Haines (Ed.), Fundamental Neuroscience for Basic and Clinical

Applications (4th ed., pp. 181–197). Philadelphia, PA: Elsevier.

Hamilton, J. L., & Alloy, L. B. (2016). Atypical reactivity of heart rate variability to

stress and depression across development: Systematic review of the literature and

directions for future research. Clinical Psychology Review, 50, 67–79.

https://doi.org/10.1016/j.cpr.2016.09.003

Hastings, P. D., Nuselovici, J. N., Utendale, W. T., Coutya, J., McShane, K. E., &

Sullivan, C. (2008). Applying the polyvagal theory to children’s emotion regulation:

Social context, socialization, and adjustment. Biological Psychology, 79, 299–306.

https://doi.org/10.1016/j.biopsycho.2008.07.005

Hastings, P. D., Sullivan, C., McShane, K. E., Coplan, R. J., Utendale, W. T., & Vyncke,

J. D. (2008). Parental socialization, vagal regulation, and preschoolers’ anxious

difficulties: Direct mothers and moderated fathers. Child Development, 79(1), 45–

64. https://doi.org/10.1111/j.1467-8624.2007.01110.x

Hegarty-Craver, M., Gilchrist, K. H., Propper, C. B., Lewis, G. F., DeFilipp, S. J.,

Coffman, J. L., & Willoughby, M. T. (2017). Automated respiratory sinus arrhythmia

measurement: Demonstration using executive function assessment. Behavior

Research Methods, 1–8. https://doi.org/10.3758/s13428-017-0950-2

Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker

216

in stress research. Psychoneuroendocrinology, 34(2), 163–171.

https://doi.org/10.1016/j.psyneuen.2008.10.026

Henderson, H. a., Marshall, P. J., Fox, N. a., & Rubin, K. H. (2004). Psychophysiological

and Behavioral Evidence for Varying Forms and Functions of Nonsocial Behavior in

Preschoolers. Child Development, 75(1), 251–263. https://doi.org/10.1111/j.1467-

8624.2004.00667.x

Hirshfeld-Becker, D. R., Biederman, J., Henin, A., Faraone, S. V., Davis, S., Harrington,

K., & Rosenbaum, J. F. (2007). Behavioral inhibition in preschool children at risk is

a specific predictor of middle childhood social anxiety: A five-year follow-up.

Journal of Developmental & Behavioral Pediatrics, 28(3), 225–233.

https://doi.org/10.1097/01.DBP.0000268559.34463.d0

Huikuri, H. V., Mäkikallio, T., Airaksinen, K. E. J., Mitrani, R., Castellanos, A., &

Myerburg, R. J. (1999). Measurement of heart rate variability: A clinical tool or a

research toy? Journal of the American College of Cardiology, 34(7), 1878–1883.

https://doi.org/10.1016/S0735-1097(99)00468-4

Huikuri, H. V., & Stein, P. K. (2013). Heart rate variability in risk stratification of cardiac

patients. Progress in Cardiovascular Diseases, 56, 153–159.

https://doi.org/10.1016/j.pcad.2013.07.003

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P.

(2010). Research Domain Criteria (RDoC): Toward a new classification framework

for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751.

https://doi.org/10.1176/appi.ajp.2010.09091379

Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S., & Turpin, G. (1981).

217

Publication guidelines for heart rate studies in men. Psychphysiology, 18(3), 226–

231. https://doi.org/10.1016/j.jacc.2007.01.076.White

Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of

behavioral inhibition in children. Child Development, 58(6), 1459–1473.

https://doi.org/10.2307/1130685

Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological bases of childhood shyness.

Science (New York, N.Y.), 240(4849), 167–171.

https://doi.org/10.1126/science.3353713

Kaufmann, T., Sutterlin, S., Schulz, S. M., & Vogele, C. (2011). ARTiiFACT: A tool for

heart rate artifact processing and heart rate variability analysis. Behavior Research

Methods, 43(4), 1161–1170. https://doi.org/10.3758/s13428-011-0107-7

Kenkel, W. M., Suboc, G., & Carter, S. C. (2014). Autonomic, behavioral and

neuroendocrine correlates of paternal behavior in male prairie voles. Physiology and

Behavior, 128, 252–259. https://doi.org/10.1016/j.physbeh.2014.02.006

Kim, B. S., & Yoo, S. K. (2006). Motion artifact reduction in photoplethysmography

using independent component analysis. IEEE Transactions on Biomedical

Engineering, 53(3), 566–568. https://doi.org/10.1109/TBME.2005.869784

Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier Social Stress

Test”: A tool for investigating psychobiological stress responses in a laboratory

setting. Neuropsychobiology, 28(1–2), 76–81. https://doi.org/10.1159/000119004

Kleiger, R. E., Miller, J. P., Bigger, J. T., & Moss, A. J. (1987). Decreased heart rate

variability and its association with increased mortality after acute myocardial

infarction. The American Journal of Cardiology, 59, 256–262.

218

https://doi.org/10.1016/0002-9149(87)90795-8

Kleiger, R. E., Stein, P. K., & Bigger, J. T. (2005). Heart rate variability: Measurement

and clinical utility. Annals of Noninvasive Electrocardiography, 10, 88–101.

Kogan, A., Gruber, J., Shallcross, A. J., Ford, B. Q., & Mauss, I. B. (2013). Too much of

a good thing? Cardiac vagal tone’s nonlinear relationship with well-being. Emotion,

13, 599–604. https://doi.org/10.1037/a0032725

Kogan, A., Oveis, C., Carr, E. W., Gruber, J., Mauss, I. B., Shallcross, A., … Keltner, D.

(2014). Vagal activity is quadratically related to prosocial traits, prosocial emotions,

and observer perceptions of prosociality. Journal of Personality and Social

Psychology, 107, 1051–1063. https://doi.org/10.1037/a0037509

Kudielka, B. M., Hellhammer, D. H., & Kirschbaum, C. (2010). Ten years of research

with the Trier Social Stress Test - revisited. In E. Harmon-Jones & P. Winkielman

(Eds.), Social neuroscience: Integrating biological and psychological explanations

for social behavior (pp. 56–83). New York: Guilford.

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal

tone in psychophysiological research - Recommendations for experiment planning,

data analysis, and data reporting. Frontiers in Psychology, 8(FEB).

https://doi.org/10.3389/fpsyg.2017.00213

Lamm, C., Porges, E. C., Cacioppo, J. T., & Decety, J. (2008). Perspective taking is

associated with specific facial responses during empathy for pain. Brain Research,

1227, 153–161. https://doi.org/10.1016/j.brainres.2008.06.066

Lee, H., Lee, J., Jung, W., & Lee, G. (2007). The Periodic Moving Average Filter for

Removing Motion Artifacts from PPG Signals. International Journal Of Control

219

Automation And Systems, 5(6), 701–706.

Lewis, G. F., Furman, S. A., McCool, M. F., & Porges, S. W. (2012). Statistical strategies

to quantify respiratory sinus arrhythmia: Are commonly used metrics equivalent?

Biological Psychology, 89(2), 349–364.

https://doi.org/10.1016/j.biopsycho.2011.11.009

LoBue, V., & Thrasher, C. (2014). The Child Affective Facial Expression (CAFE) set:

Validity and reliability from untrained adults. Frontiers in Psychology, 5(OCT), 1–8.

https://doi.org/10.3389/fpsyg.2014.01532

Lu, S., Zhao, H., Ju, K., Shin, K., Lee, M., Shelley, K., & Chon, K. H. (2008). Can

photoplethysmography variability serve as an alternative approach to obtain heart

rate variability information? Journal of Clinical Monitoring and Computing, 22(1),

23–29. https://doi.org/10.1007/s10877-007-9103-y

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., &

Schwartz, P. J. (1996). Heart rate variability: Standards of measurement,

physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.

https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

Marshall, P. J., & Stevenson-Hinde, J. (1998). Behavioral inhibition, heart period, and

respiratory sinus arrhythmia in young children. Developmental Psychobiology,

33(3), 283–292. https://doi.org/10.1002/(SICI)1098-2302(199811)33:3<283::AID-

DEV8>3.0.CO;2-N

McKinley, P. S., Shapiro, P. A., Bagiella, E., Myers, M. M., De Meersman, R. E., Grant,

I., & Sloan, R. P. (2003). Deriving heart period variability from blood pressure

waveforms. Journal of Applied Physiology, 95(4), 1431–1438.

220

https://doi.org/10.1152/japplphysiol.01110.2002

Mifsud, C., & Rapee, R. M. (2005). Early intervention for childhood anxiety in a school

setting: Outcomes for an economically disadvantaged population. Journal of the

American Academy of Child and Adolescent Psychiatry, 44(10), 996–1004.

https://doi.org/10.1097/01.chi.0000173294.13441.87

Miller, J. G., Chocol, C., Nuselovici, J. N., Utendale, W. T., Simard, M., & Hastings, P.

D. (2013). Children’s dynamic RSA change during anger and its relations with

parenting, temperament, and control of aggression. Biological Psychology, 92(2),

417–425. https://doi.org/10.1016/j.biopsycho.2012.12.005

Miller, J. G., Kahle, S., & Hastings, P. D. (2017). Moderate baseline vagal tone predicts

greater prosociality in children. Developmental Psychology, 53, 274–289.

https://doi.org/10.1037/dev0000238

Moss, P. A. (1994). Can there Be validity without reliability? Educational Researcher,

23, 5–12. https://doi.org/10.3102/0013189X023002005

Muris, P., van Brakel, A. M. L., Arntz, A., & Schouten, E. (2011). Behavioral inhibition

as a risk factor for the development of childhood anxiety disorders: A longitudinal

study. Journal of Child and Family Studies, 20(2), 157–170.

https://doi.org/10.1007/s10826-010-9365-8

Naftel, J. P., Ard, M. D., & Fratkin, J. D. (2013). The cell biology of neurons and glia. In

Fundamental Neuroscience for Basic and Clinical Applications2 (4th ed., pp. 14–

31). Philadelphia, PA: Elsevier.

Newlin, D. B., & Levenson, R. W. (1979). Pre‐ejection period: Measuring beta‐

adrenergic influences upon the heart. Psychophysiology, 16(6), 546–552.

221

https://doi.org/10.1111/j.1469-8986.1979.tb01519.x

Noldus. (2015). Observer XT. Retrieved from https://www.noldus.com/human-behavior-

research/products/the-observer-xt

Park, G., & Thayer, J. F. (2014). From the heart to the mind: Cardiac vagal tone

modulates top-down and bottom-up visual perception and attention to emotional

stimuli. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2014.00278

Penttila, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., …

Scheinin, H. (2001). Time domain, geometrical and frequency domain analysis of

cardiac vagal outflow: effects of various respiratory patterns. Clinical Physiology,

21(3), 365–376. https://doi.org/10.1046/j.1365-2281.2001.00337.x

Pflugradt, M., Geissdoerfer, K., Goernig, M., & Orglmeister, R. (2017). A Fast

Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation

Based on Pulse Wave Velocity Measurements in Wearable Sensors. Sensors, 17(1),

158. https://doi.org/10.3390/s17010158

Porges, S. W. (1985). 4,510,944. U.S.: U.S. Patent Office.

Porges, S. W. (1988). MxEdit v2.01. Bethesda, MD: Delta Biometrics.

Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our

evolutionary heritage. A polyvagal theory. Psychophysiology, 32, 301–318.

https://doi.org/10.1111/j.1469-8986.1995.tb01213.x

Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous

system. International Journal of Psychophysiology, 42(2), 123–146.

https://doi.org/10.1016/S0167-8760(01)00162-3

Porges, S. W. (2003). Social engagement and attachment: A phyolgenetic perspective.

222

Annals of the New York Academy of Sciences, 1008, 31–47.

https://doi.org/10.1196/annals.1301.004

Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143.

https://doi.org/10.1016/j.biopsycho.2006.06.009

Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate

and respiration. Biological Pschology, 34(2–3), 93–130.

https://doi.org/10.1016/0301-0511(92)90012-J

Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., & Greenspan, S. I. (1996).

Infant regulation of the vagai “brake” predicts child behavior problems: A

psychobiological model of social behavior. Developmental Psychobiology,

29(August), 697–712. Retrieved from

http://ezproxy.lib.utexas.edu/login?url=http://search.ebscohost.com/login.aspx?direc

t=true&db=psyhref&AN=DP.BI.FIG.PORGES.IRVPCB

Quintana, D. S., Alvares, G. A., & Heathers, J. A. J. (2016). Guidelines for Reporting

Articles on Psychiatry and Heart rate variability (GRAPH): Recommendations to

advance research communication. Translational Psychiatry, 6(5), e803.

https://doi.org/10.1038/tp.2016.73

Rapee, R. M., & Jacobs, D. (2002). The reduction of temperamental risk for anxiety in

withdrawn preschoolers: A pilot study. Behavioural and Cognitive Psychotherapy,

30(2), 211–215. https://doi.org/10.1017/S1352465802002084

Rapee, R. M., Kennedy, S., Ingram, M., Edwards, S., & Sweeney, L. (2005). Prevention

and early intervention of anxiety disorders in inhibited preschool children. Journal

of Consulting and Clinical Psychology, 73(3), 488–497.

223

https://doi.org/10.1037/0022-006X.73.3.488

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.

Cambridge, MA: MIT Press.

Richard Jennings, J., Allen, B., Gianaros, P. J., Thayer, J. F., & Manuck, S. B. (2015).

Focusing neurovisceral integration: Cognition, heart rate variability, and cerebral

blood flow. Psychophysiology. https://doi.org/10.1111/psyp.12319

Rottenberg, J., Wilhelm, F. H., Gross, J. J., & Gotlib, I. H. (2002). Respiratory sinus

arrhythmia as a predictor of outcome in major depressive disorder. Journal of

Affective Disorders, 71(1–3), 265–272. https://doi.org/10.1016/S0165-

0327(01)00406-2

Rubin, K. H. (2001). The Play Observation Scale. College Park, MD: University of

Maryland.

Rubin, K. H., Coplan, R. J., & Bowker, J. C. (2009). Social Withdrawal in Childhood.

Annual Review of Psychology.

https://doi.org/10.1146/annurev.psych.60.110707.163642

Rubin, K. H., Hastings, P. D., Stewart, S. L., Henderson, H. a, & Chen, X. (1997). The

consistency and concomitants of inhibition: some of the children, all of the time.

Child Development, 68(3), 467–483. https://doi.org/10.2307/1131672

Sakaki, M., Yoo, H. J., Nga, L., Lee, T. H., Thayer, J. F., & Mather, M. (2016). Heart rate

variability is associated with amygdala functional connectivity with MPFC across

younger and older adults. NeuroImage, 139, 44–52.

https://doi.org/10.1016/j.neuroimage.2016.05.076

Saul, J. (1990). Beat-to-beat variations of heart rate reflect modulation of cardiac

224

autonomic outflow. Physiology, 5(1), 32–37.

https://doi.org/10.1152/physiologyonline.1990.5.1.32

Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of

heart rate variability?: A review on studies comparing photoplethysmographic

technology with an electrocardiogram. International Journal of Cardiology, 166(1),

15–29. https://doi.org/10.1016/j.ijcard.2012.03.119

Schipke, J. D., Pelzer, M., & Arnold, G. (1999). Effect of respiration on short-term heart

rate variability. Journal of Clinical and Basic Cardiology, 2, 92–95. Retrieved from

http://www.kup.at/journals/summary/39.html

Schmidt, L. a., Fox, N. a., Schulkin, J., & Gold, P. W. (1999). Behavioral and

psychophysiological correlates of self-presentation in temperamentally shy children.

Developmental Psychobiology, 35(2), 119–135. https://doi.org/10.1002/(SICI)1098-

2302(199909)35:2<119::AID-DEV5>3.0.CO;2-G

Seilmayer, M. (2016). spectral: Common methods of spectral data analysis. R package

version 1.0.1. Retrieved from https://cran.r-project.org/package=spectral%7D

Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K. K., & Anand, S. (2008). Assessment of

heart rate variability derived from finger-tip photoplethysmography as compared to

electrocardiography. Journal of Medical Engineering and Technology, 32(6), 479–

484. https://doi.org/10.1080/03091900701781317

Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and

norms. Frontiers in Public Health, 5, 1–17.

https://doi.org/10.3389/fpubh.2017.00258

Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & Doornen, L.

225

J. P. (1990). Methodological Guidelines for Impedance Cardiography.

Psychophysiology, 27(1), 1–23. https://doi.org/10.1111/j.1469-8986.1990.tb02171.x

Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications (4th

ed.). New York: Springer Nature.

Sloan, D. M. (2004). Emotion regulation in action: emotional reactivity in experiential

avoidance. Behaviour Research and Therapy, 42, 1257–1270.

https://doi.org/10.1016/j.brat.2003.08.006

Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of

neurovisceral integration. Neuroscience and Biobehavioral Reviews, 75, 274–296.

https://doi.org/10.1016/j.neubiorev.2017.02.003

Stan Development Team. (2017). Stan Modeling Language: A User’s Guide and

Reference Manual.

Stoffer, D. (2017). astsa: Applied statistical time series analysis. R package version 1.8.

Retrieved from https://cran.r-project.org/package=astsa%0A

Sukor, J. A., Redmond, S. J., & Lovell, N. H. (2011). Signal quality measures for pulse

oximetry through waveform morphology analysis. Physiological Measurement,

32(3), 369–384. https://doi.org/10.1088/0967-3334/32/3/008

Taylor, E. W., Leite, C. A. C., Sartori, M. R., Wang, T., Abe, A. S., & Crossley, D. A.

(2014). The phylogeny and ontogeny of autonomic control of the heart and

cardiorespiratory interactions in vertebrates. Journal of Experimental Biology,

217(5), 690–703. https://doi.org/10.1242/jeb.086199

Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-

analysis of heart rate variability and neuroimaging studies: Implications for heart

226

rate variability as a marker of stress and health. Neuroscience and Biobehavioral

Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009

Thayer, J. F., Friedman, B. H., & Borkovec, T. D. (1996). Automatic characteristics of

generalized anxiety disorder and worry. Biological Psychiatry, 39(95), 255–266.

https://doi.org/10.1016/0006-3223(95)00136-0

Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate

variability, prefrontal neural function, and cognitive performance: The neurovisceral

integration perspective on self-regulation, adaptation, and health. Annals of

Behavioral Medicine, 37(2), 141–153. https://doi.org/10.1007/s12160-009-9101-z

Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion

regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216.

https://doi.org/10.1016/S0165-0327(00)00338-4

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

Utendale, W. T., Nuselovici, J., Saint-Pierre, A. B., Hubert, M., Chochol, C., & Hastings,

P. D. (2014). Associations between inhibitory control, respiratory sinus arrhythmia,

and externalizing problems in early childhood. Developmental Psychobiology, 56,

686–699. https://doi.org/10.1002/dev.21136

Vetrugno, R., Liguori, R., Cortelli, P., & Montagna, P. (2003). Sympathetic skin response.

Clinical Autonomic Research, 13(4), 256–270. https://doi.org/10.1007/s10286-003-

0107-5

