220 research outputs found

    Occupying wide open spaces? Late Pleistocene hunter–gatherer activities in the Eastern Levant

    Get PDF
    With a specific focus on eastern Jordan, the Epipalaeolithic Foragers in Azraq Project explores changing hunter-gatherer strategies, behaviours and adaptations to this vast area throughout the Late Pleistocene. In particular, we examine how lifeways here (may have) differed from surrounding areas and what circumstances drew human and animal populations to the region. Integrating multiple material cultural and environmental datasets, we explore some of the strategies of these eastern Jordanian groups that resulted in changes in settlement, subsistence and interaction and, in some areas, the occupation of substantial aggregation sites. Five years of excavation at the aggregation site of Kharaneh IV suggest some very intriguing technological and social on-site activities, as well as adaptations to a dynamic landscape unlike that of today. Here we discuss particular aspects of the Kharaneh IV material record within the context of ongoing palaeoenvironmental reconstructions and place these findings in the wider spatial and temporal narratives of the Azraq Basin

    Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    Get PDF
    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes

    Mitochondrial DNA signals of late glacial recolonization of Europe from near Eastern refugia

    Get PDF
    Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ?19–12 thousand years (ka) ago.<br/

    The Enzymatic Activity of Type 1 Iodothyronine Deiodinase (D1) is Low in Liver Hemangioma: A Preliminary Study

    Get PDF
    Type 1 iodothyronine deiodinase (D1) is a crucial enzyme which converts the prohormone thyroxine (T4) into active tri-iodothyronine (T3). There has been strong evidence that the metabolism of thyroid hormones is disturbed in some neoplastic tissues such as thyroid, renal, and breast cancer. However, there are few available data about D1 enzyme activity in benign tumors such as hemangioma, which is the most common primary liver tumor. Hence this study aimed to determine the enzymatic activity of D1 in hemangiomas in relation to healthy liver tissue. Seven tumors and healthy control tissues were obtained from patients who had liver resection due to hemangioma. The activity was assessed by measurement of radioactive iodine released by deiodination catalyzed by D1. It was found that D1 activity was significantly lower in the hemagiomas than in the healthy surrounding tissue (p = 0.0017). The results indicated that thyroid hormones play important roles not only in the regulation of cell metabolism, but also in cell growth, division, and apoptosis. The active form T3 acts through its nuclear receptors and influences the up- and down-regulation of target genes. Healthy liver tissue expresses a high level of D1, but disturbed D1 activity may result in changes in the local concentration of T3 which may impair gene transcription. These finding demonstrate a low enzymatic activity of D1 in liver hemangioma and suggest an as yet unknown role of thyroid hormones in this type of benign liver tumor

    Cooperativity and flexibility in enzyme evolution

    Get PDF
    Enzymes are flexible catalysts, and there has been substantial discussion about the extent to which this flexibility contributes to their catalytic efficiency. What has been significantly less discussed is the extent to which this flexibility contributes to their evolvability. Despite this, recent years have seen an increasing number of both experimental and computational studies that demonstrate that cooperativity and flexibility play significant roles in enzyme innovation. This review covers key developments in the field that emphasize the importance of enzyme dynamics not just to the evolution of new enzyme function(s), but also as a property that can be harnessed in the design of new artificial enzymes.The European Research Council has provided financial support under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 306474. This work was also funded by the Feder Funds, Grants from the Spanish Ministry of Economy and Competitiveness (BIO2015-66426-R and CSD2009-00088) and the Human Frontier Science Program (RGP0041/2017). A.P. is a Wenner-Gren Foundations Postdoctoral Fellow and S. C. L. K. is a Wallenberg Academy Fellow

    Mind Perception: Real but Not Artificial Faces Sustain Neural Activity beyond the N170/VPP

    Get PDF
    Faces are visual objects that hold special significance as the icons of other minds. Previous researchers using event-related potentials (ERPs) have found that faces are uniquely associated with an increased N170/vertex positive potential (VPP) and a more sustained frontal positivity. Here, we examined the processing of faces as objects vs. faces as cues to minds by contrasting images of faces possessing minds (human faces), faces lacking minds (doll faces), and non-face objects (i.e., clocks). Although both doll and human faces were associated with an increased N170/VPP from 175–200 ms following stimulus onset, only human faces were associated with a sustained positivity beyond 400 ms. Our data suggest that the N170/VPP reflects the object-based processing of faces, whether of dolls or humans; on the other hand, the later positivity appears to uniquely index the processing of human faces—which are more salient and convey information about identity and the presence of other minds

    Sequestration of Highly Expressed mRNAs in Cytoplasmic Granules, P-Bodies, and Stress Granules Enhances Cell Viability

    Get PDF
    Transcriptome analyses indicate that a core 10%–15% of the yeast genome is modulated by a variety of different stresses. However, not all the induced genes undergo translation, and null mutants of many induced genes do not show elevated sensitivity to the particular stress. Elucidation of the RNA lifecycle reveals accumulation of non-translating mRNAs in cytoplasmic granules, P-bodies, and stress granules for future regulation. P-bodies contain enzymes for mRNA degradation; under stress conditions mRNAs may be transferred to stress granules for storage and return to translation. Protein degradation by the ubiquitin-proteasome system is elevated by stress; and here we analyzed the steady state levels, decay, and subcellular localization of the mRNA of the gene encoding the F-box protein, UFO1, that is induced by stress. Using the MS2L mRNA reporter system UFO1 mRNA was observed in granules that colocalized with P-bodies and stress granules. These P-bodies stored diverse mRNAs. Granules of two mRNAs transported prior to translation, ASH1-MS2L and OXA1-MS2L, docked with P-bodies. HSP12 mRNA that gave rise to highly elevated protein levels was not observed in granules under these stress conditions. ecd3, pat1 double mutants that are defective in P-body formation were sensitive to mRNAs expressed ectopically from strong promoters. These highly expressed mRNAs showed elevated translation compared with wild-type cells, and the viability of the mutants was strongly reduced. ecd3, pat1 mutants also exhibited increased sensitivity to different stresses. Our interpretation is that sequestration of highly expressed mRNAs in P-bodies is essential for viability. Storage of mRNAs for future regulation may contribute to the discrepancy between the steady state levels of many stress-induced mRNAs and their proteins. Sorting of mRNAs for future translation or decay by individual cells could generate potentially different phenotypes in a genetically identical population and enhance its ability to withstand stress
    corecore