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Abstract

There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial
function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for
oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed
no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for
obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and
adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS
trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A
meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the
respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs
between the 50th and 95th percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA
software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50th

percentile for the set of the 16 nuclear regulators of mitochondrial genes (pGSEA,50 = 0.0103). This finding was not confirmed
in the trios (pGSEA,50 = 0.5991), but in KORA (pGSEA,50 = 0.0398). The meta-analysis again indicated a trend for enrichment
(pMAGENTA,50 = 0.1052, pMAGENTA,75 = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched
in the gene set of 16 nuclear regulators of mitochondrial genes.
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Introduction

Heritability estimates for variance of the body mass index (BMI)

range between 40 to 70% [1]. The latest analysis of nearly 250,000

individuals confirmed or newly identified 32 polygenic loci that are

associated with BMI [2]. These variants, however, only explain

about 1.5% of the BMI variance. Because of the polygenic nature

and the small effect sizes of these loci [1,2], an estimation revealed

that even an increase to a sample size of 730,000 individuals would

not lead to a substantial increase in the explained BMI variance

(,5%).

To discover further genetic variation associated with a certain

trait, single-locus-oriented genome-wide association studies

(GWAS) should be extended to pathway-based approaches or

gene set enrichment analyses (GSEA). As these analyses concen-

trate on the combined effects across several loci, a gain in statistical

power is expected and new genetic insight in the trait of interest

might be revealed [3–5]. For example, Lui et al. [6] performed a

pathway-based GWA analysis for BMI and body fat mass in US

whites and showed the vasoactive intestinal peptide (VIP) pathway

to be significantly associated with the investigated traits. This

finding was recently confirmed by Evangelou et al. [7] in a

subsample of the EPIC-Norfolk study [8].

It is well known that mitochondria are the cellular power plants

whose main function is ATP production via oxidative phosphor-

ylation (OXPHOS). Impairment of mitochondrial function might

influence body weight. Indeed, there are hints that mitochondria

(size, number) and mitochondrial function are altered in obesity.
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Adult obese individuals showed smaller mitochondria in skeletal

muscle tissue [9] and a reduced complex I activity in both skeletal

muscle and cardiomyocytes [9,10] compared to lean subjects.

Obesity was also associated with a reduced mRNA expression of

the mitochondrial transcription factor A (Tfam) and the nuclear

respiratory factor-1 (NRF1), which are two key regulators for

mitochondrial biogenesis, and with strongly reduced protein and

mRNA expressions of NADH dehydrogenase 6 (ND6), a subunit

of complex I in the respiratory chain [10].

The mitochondrial DNA codes only for 37 genes, of which 22

encode tRNAs, two rRNAs and 13 OXPHOS subunits of the

complexes I, III, IV and V. Additionally, more than 1,000

nuclear-encoded mitochondrial genes are necessary to ensure

complete mitochondrial function and biogenesis [11–14].

Segrè et al. [15] performed a GSEA on nuclear-encoded

mitochondrial genes for association with type 2 diabetes mellitus

(T2DM) or related glycemic traits, and grouped these genes into

three sets: (1) 16 autosomal nuclear regulators of mitochondrial

genes based on the literature [12,16–20]; (2) 91 autosomal

OXPHOS genes [15,21]; and (3) 966 autosomal nuclear-encoded

human mitochondrial genes taken from the MitoCarta compen-

dium [13]. Segrè et al. [15] did not find enrichment in any of the

three gene sets in association with T2DM or related glycemic

traits.

Based on the central role of mitochondria in metabolism and

findings of an altered mitochondrial function we performed a

GSEA focusing on obesity to address the question if gene sets of

nuclear encoded mitochondrial genes are enriched for modest

association signals that collectively influence obesity risk.

Materials and Methods

Study Subjects
Ethics Statement. Written informed consent was given by all

participants and in case of minors by their parents. The study was

approved by the Ethics Committees of the Universities of Marburg

and Essen and the Bavarian Medical Association. It was

conducted in accordance with the Declaration of Helsinki.

Discovery. The initial GSEA was performed in a case-

control GWAS sample comprising 453 (extremely) obese children

and adolescents and 435 normal weight or lean adult controls [22].

Using lean adults who were never overweight or obese during

childhood (as assessed by interview) as control group reduces the

chances of misclassification compared to the use of lean children as

controls who might become overweight or obese in adulthood

[23]. The measured body mass index (BMI; in kg/m2) was

assessed for extremeness using age- and sex-specific percentile

criteria for the German population from the National Nutrition

Survey I [24]. According to this reference population, all cases

were at least overweight (BMI $90th percentile), and 84.4% were

extremely obese (BMI $99th percentile), the lean controls had a

BMI of 18.3161.11 kg/m2 (Table S1).

Confirmation. For independent confirmation a family-based

GWAS sample which consisted of 705 obesity trios, each

comprising one (extremely) obese child or adolescent (index case)

and both biological parents, was used [22]. All index cases were at

least overweight (BMI $90th percentile), and 83.8% were

extremely obese (BMI $99th percentile) with regard to reference

data from the German National Nutrition Survey I ([24]; Table

S1).

In addition, we analyzed a population-based sample comprising

1,743 adult participants, which is a sub-sample of the total KORA

F4 sample (Cooperative Health Research in the Region of

Augsburg, Table S1, [25]). This sample was analyzed as case-

control sample (KORA-CC): all individuals with a BMI $30 kg/

m2 were categorized as obese cases (n = 463) and those with a

BMI ,25 kg/m2 were coded as normal weight controls (n = 483).

This population-based sample was converted into a case-control

sample, as it was recently shown that genetic markers with an

effect in the extremes of a trait are detected more solidly within a

case-control design compared to a linear regression design, even

for smaller sample sizes [26]. This is due to the fact that linear

regression results are mostly influenced by the majority of

individuals with a moderate trait and only little by the few

individuals of the extremes [26].

Meta-analysis
We performed a meta-analysis of all three samples using the

METAL software package (www.sph.umich.edu/csg/abecasis/

metal). In more detail, meta-analysis was carried out using the

inverse variance method by assuming a fixed effect model. We

adopted the method of Kazeem and Farrell [27] to meta-analyze

single marker information from the two case-control analyses and

from the family-based TDTs.

Genotyping
All three samples were genotyped by the Affymetrix Genome-

Wide Human SNP Array 6.0. For quality control, only individuals

with a genome-wide SNP call rate (CR) $95% were included.

Furthermore, in each of the 705 trios from the family-based

GWAS sample the percentage of markers with observed Mende-

lian inconsistent genotype calls (genome-wide 906,703 SNPs) was

below 5%. Focusing on the approximate 870,000 autosomal SNPs,

the following genotyping quality control filters were applied to

each sample separately (Table S2): (1) sample CR $95%; (2) MAF

$1% in the whole sample (case-control and population-based

sample) and MAF $5% in the set of all parents of the family-based

sample, respectively; (3) two-sided exact p-value $0.001 of the test

for Hardy-Weinberg-Equilibrium (HWE) [28] in the whole

KORA sample, in the parents of the family-based sample and in

the controls of the case-controls GWAS sample, respectively.

Additionally, after setting all Mendelian inconsistent calls to

‘‘missing’’ in the family-based sample, we claimed (4) at least one

major allele and one minor allele transmission at each SNP.

703,015/641,991/659,502 autosomal SNPs passed this QC in the

case-control/family-based/population-based sample, respectively

and were used for the analysis (Table S2).

Statistical Analyses
Gene set enrichment analysis (GSEA) for sets of

mitochondrial genes. Each gene set enrichment analysis

(GSEA) is based on the idea of comparing gene association signals

of gene sets with biological plausibility for the given phenotype to

those of the genome-wide set of genes [3,4,15]. First, the analyzed

SNPs are linked to their corresponding gene. Secondly, a test

statistic (e.g. p-value) aggregating the SNP information is derived

for each gene. Finally, the distribution of test statistics is compared

between gene sets (details see below).

We tested those three mitochondrial gene sets for enrichment of

obesity association signals, which were considered in the study of

Segrè et al. [15] who tested for an enrichment of association

signals with T2DM and related glycemic traits: (1) a set of 16

autosomal nuclear regulators of mitochondrial genes based on the

literature [12,16–20], (2) a set of 91 autosomal oxidative

phosphorylation (OXPHOS) genes [15,21], and (3) a list of 966

autosomal nuclear-encoded human mitochondrial genes taken

from the MitoCarta compendium which are over 80% of all

assumed mitochondrial genes [13].

Gene Set Enrichment Analysis for Obesity
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GSEA – Discovery. In the case-control GWAS sample, the

Cochran-Armitage trend test for an additive mode of inheritance

was applied to each autosomal SNP. Afterwards, SNPs were

mapped onto genes. For this purpose, a list of human gene

transcripts (n = 26,914 for the hg18 March 2006 version) was

downloaded from the UCSC Genome Browser (http://genome.

uscs.edu/). After exclusion of genes with two or more transcripts

on separate chromosomes or with more than 1 Mb distance on the

same chromosome, a total of 17,680 autosomal genes were

followed-up. In consistency with Segrè et al. [15], SNPs that are

located within 110 kb upstream and 40 kb downstream to the

most extreme transcript start and end site of a gene were assigned

to this gene. These boundaries were chosen as they represent the

99th percentiles of the distances of cis-eQTLs from transcript start

and end sites of adjacent genes [29]. Genes without SNPs in their

extended gene boundaries (n = 55) were discarded from GSEA

testing.

Subsequently, each gene was assigned a gene-wise empirically

corrected p-value Pg. To determine Pg, the lowest observed p-

value Pg;min of each gene was first determined and stored.

Secondly, 10,000 permutations of the genotype data were

performed using PLINK. In each permutation, affection status

was flipped for all SNPs to generate the null distribution. Finally,

Pg was calculated as the fraction of permutations whose minimal

p-value per gene was equal to or smaller than Pg;min. To achieve

maximal accuracy, for those genes with Pg #0.01 (0.001), the

procedure was repeated with 100,000 (1,000,000) permutations.

Prior to GSEA testing, we addressed physical clustering of genes

by excluding all genes with the identical selected SNP as compared

to the gene with the lowest Pg for the SNP already in the gene set.

This exclusion was done in order to avoid significant gene set

enrichment based on identical association signals [15].

Our alternative hypothesis was that gene p-value ranks in one of

the three gene subsets of interest were skewed towards high ranks

compared to the full autosomal set of genes. To test this

hypothesis, we applied: (1) the leading-edge-fraction-comparison

test as proposed by Segrè et al. [15] with Pcut-off = 95th, 75th and

50th percentile of the set of autosomal gene-wise p-values and with

10,000 samplings from the full autosomal gene p-value distribution

(with corresponding GSEA p-values: PGSEA,95, PGSEA,75 and

PGSEA,50). This test is based on the idea of comparing the fraction

of genes with gene p-values below a certain cut-off (i.e. above a

certain percentile; leading edge fraction) in the full set of genes and

in the gene subset of interest. Here, the null distribution of such

fractions in the gene subset is derived by randomly sampling the

same number of gene p-values from the full set of gene p-values.

The GSEA p-value is then determined by dividing the number of

samplings with equal or larger leading edge fraction as the

observed one by the number of samplings generated. To test the

robustness of this test, we additionally ran three alternative one-

sided GSEA tests as proposed by Segrè et al. [15]: (2) the

Wilcoxon-Mann-Whitney test (PGSEA,WMW); (3) the Kolmogorov-

Smirnov test (PGSEA,KS); and (4) the t-test (PGSEA,t).

GSEA – Confirmation. In the family-based GWAS sample,

for each SNP a transmission disequilibrium test (TDT; [30]) was

calculated using the PLINK v1.07 software [31] (http://pngu.

mgh.harvard.edu/purcell/plink/) and assuming an additive allelic

model of inheritance. Families with missing genotypes were

excluded from TDT analysis of the respective SNP. In total, for

only 0.37% of all SNPs more than 5% of trios were excluded from

the TDT (due to genotyping failures and/or Mendelian

inconsistencies). Gene-wise empirically corrected p-values for the

family-based GWAS sample were based on randomly flipping the

parentally transmitted allele for each family and each permutation.

In KORA-CC each SNP was tested by the Cochran-Armitage

trend test for an association with obesity, and gene-wise p-values

were determined as for the discovery CC sample. For both the

family-based GWAS sample and KORA-CC the remaining

GSEA procedure was performed as described for the discovery

sample.

Meta-Analysis Gene set Enrichment of variant

Associations (MAGENTA). The Meta-Analysis Gene set En-

richment of variant Associations (MAGENTA) software provided

by Segrè et al. [15] was specifically designed for the application to

large-genome-wide association study meta-analyses in which

individual genotypes are not available. In this context, it is not

possible to evaluate statistical gene-wise significance via standard

phenotype permutation procedures as described above. Instead, a

linear regression-based approach accounting for physical gene

size, the number of SNPs and their genetic properties (LD between

SNPs, number of recombination hotspots and genetic distance of

the gene), was proposed to determine gene-wise corrected p-

values.

After bringing together the single marker information from the

two case-control samples and the family-based TDTs (in

application of the METAL software; for details see ‘Meta-

analysis’), we applied MAGENTA to the single marker p-values

of the meta-analysis. Leading edge fraction tests for the 95th, the

75th and the 50th percentile cut-off were performed as well as the

alternatively included exact Wilcoxon-Mann-Whitney test. These

cut-offs were chosen because simulations showed that for modest

effects the 95th percentile and for weak effects the 75th percentile

yielded the optimal power to detect gene set enrichment [15] and

with additional regard to our discovery findings.

For reasons of comparability, in addition to our permutation-

based GSEA testing procedure, we applied MAGENTA to all

three samples individually. Regression-corrected gene p-values

(pMAGENTA) and permutation-based gene p-values (pGSEA) were

shown to be highly correlated (r = 0.95; see Table 1 & 2).

Results

Discovery
In our case-control sample, the effective gene set size for the

GSEA analyses of all human autosomal genes was 10,180, since 55

genes did not have any genotyped SNPs within their extended

gene boundaries (110 kb upstream and 40 kb downstream to the

most extreme transcript boundaries) and 7,445 genes were

removed due to physical clustering (see Methods). In total, all

human autosomal genes were covered by 521,469 unique SNPs

(73.03% of all autosomal SNPs which can be found on the

Affymetrix SNP array 6.0). Among the lists of the 16 nuclear

regulators of mitochondrial genes and the 91 OXPHOS genes, all

genes had SNPs in their extended boundaries. Two genes of the 91

OXPHOS genes were removed due to physical clustering. There

were 1,014 unique SNPs (0.14% of all SNPs) that fell within the

gene regions of the nuclear regulators of mitochondrial genes and

2,781 unique SNPs (0.39% of all SNPs) that were located within

the gene regions of the OXPHOS genes. Furthermore, those 965

autosomal nuclear-encoded human mitochondrial genes that

contained SNPs in their gene regions were covered by 35,223

unique SNPs (4.93% of all SNPs), whereas due to physical

clustering the corresponding effective gene set size was 880.

The first gene set of 16 nuclear regulators of mitochondrial

genes was enriched for obesity association signals (PGSEA,WMW

= 0.0075, PGSEA,KS = 0.0195, PGSEA,t = 0.0053; Fig. 1 & Table 1).

This enrichment was found above the 50th percentile

(PGSEA,50 = 0.0103). The enrichment remained significant after

Gene Set Enrichment Analysis for Obesity

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e55884



T
a

b
le

1
.

D
is

co
ve

ry
:

G
SE

A
an

d
M

A
G

EN
T

A
fo

r
o

b
e

si
ty

in
th

e
ca

se
-c

o
n

tr
o

l
G

W
A

S
sa

m
p

le
o

f
4

5
3

(e
xt

re
m

e
ly

)
o

b
e

se
ca

se
s

an
d

4
3

5
le

an
co

n
tr

o
ls

.

G
e

n
e

se
t

to
ta

l
n

u
m

b
e

r
o

f
g

e
n

e
s

E
ff

e
ct

iv
e

n
u

m
b

e
r

o
f

g
e

n
e

s

n
u

m
b

e
r

o
f

S
N

P
s

in
v

o
lv

e
d

%
o

f
a

ll
a

u
to

so
m

a
l

S
N

P
s

(7
0

3
,0

1
5

)
in

v
o

lv
e

d

P
G

S
E

A
,W

M
W

,
W

il
co

x
o

n
-

M
a

n
n

-
W

h
it

n
e

y
te

st

P
G

S
E

A
,K

S
,

K
o

lm
o

g
o

ro
v

-
S

m
ir

n
o

v
-

T
e

st
P

G
S

E
A

,t
,

t-
T

e
st

P
G

S
E

A
,9

5
,

9
5

th

p
e

rc
e

n
ti

le
cu

t-
o

ff
te

st
a

P
G

S
E

A
,7

5
,

7
5

th

p
e

rc
e

n
ti

le
cu

t-
o

ff
te

st
b

P
G

S
E

A
,5

0
,

5
0

th

p
e

rc
e

n
ti

le
cu

t-
o

ff
te

st
c

P
M

A
G

E
N

T
A

,W
M

W
,

W
il

co
x

o
n

-
M

a
n

n
-W

h
it

n
e

y
te

st
d

P
M

A
G

E
N

T
A

,9
5

,
9

5
th

p
e

rc
e

n
ti

le
cu

t-
o

ff
te

st
a

P
M

A
G

E
N

T
A

,7
5

,
7

5
th

p
e

rc
e

n
ti

le
cu

t-
o

ff
te

st
b

P
M

A
G

E
N

T
A

,5
0

,
5

0
th

p
e

rc
e

n
ti

le
cu

t-
o

ff
te

st
c

1
)

N
u

cl
e

ar
re

g
u

la
to

rs
o

f
m

it
o

ch
o

n
d

ri
al

g
e

n
e

s

1
6

1
6

1
,0

1
4

0
.1

4
0

.0
0

7
5

0
.0

1
9

5
0

.0
0

5
3

0
.5

6
4

4
0

.0
7

9
6

0
.0

1
0

3
0

.0
0

4
3

0
.5

7
5

0
.0

0
7

4
0

.0
0

9
9

2
)

O
xi

d
at

iv
e

p
h

o
sp

o
ry

la
ti

o
n

g
e

n
e

s

9
1

8
9

2
,7

8
1

0
.3

9
0

.6
2

2
5

0
.8

5
8

6
0

.6
3

7
4

0
.2

8
7

3
0

.5
6

4
3

0
.5

8
3

4
0

.8
4

4
7

0
.6

5
6

5
0

.7
4

9
5

0
.7

3
6

9

3
)

N
u

cl
e

ar
-

e
n

co
d

e
d

m
it

o
ch

o
n

d
ri

al
g

e
n

e
s

9
6

6
8

8
0

3
5

,2
2

3
4

.9
3

0
.3

8
4

1
0

.2
5

0
2

0
.4

1
0

4
0

.6
4

3
7

0
.1

9
0

5
0

.1
1

9
6

0
.8

9
6

9
0

.5
2

8
7

0
.7

3
7

2
0

.7
5

7
7

al
l

au
to

so
m

al
g

e
n

e
s

1
7

,6
8

0
1

0
,1

8
0

5
2

1
,4

6
9

7
3

.0
3

re
fe

re
n

ce
re

fe
re

n
ce

re
fe

re
n

ce
re

fe
re

n
ce

re
fe

re
n

ce
re

fe
re

n
ce

re
fe

re
n

ce
re

fe
re

n
ce

re
fe

re
n

ce
re

fe
re

n
ce

a
cu

t-
o

ff
=

0
.0

2
1

6
,

b
cu

t-
o

ff
=

0
.1

6
3

1
,

c
cu

t-
o

ff
=

0
.3

9
5

1
,

d
e

xa
ct

G
SE

A
W

ilc
o

xo
n

-M
an

n
-W

h
it

n
e

y
te

st
;

G
SE

A
an

d
M

A
G

EN
T

A
p

-v
al

u
e

s
b

e
lo

w
0

.0
5

ar
e

h
ig

h
lig

h
te

d
in

b
o

ld
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
5

5
8

8
4

.t
0

0
1

Gene Set Enrichment Analysis for Obesity

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55884



Bonferroni correction for the three gene sets tested except for the

Kolmogorov-Smirnov-Test.

Confirmation
In the family-based sample (705 trios), we did not observe

enrichment of association signals to (early onset extreme) obesity in

the first gene set (PGSEA,50 = 0.5991, PGSEA,WMW = 0.7879,

PGSEA,KS = 0.7930, PGSEA,t = 0.7588; Fig. 2A & Table 2).

For the second independent case-control sample (KORA-CC),

we found significant enrichment for association signals for obesity

for the first gene set (PGSEA,WMW = 0.0260, PGSEA,KS = 0.0431,

PGSEA,t = 0.0211). The enrichment was found above the 50th

percentile (PGSEA,50 = 0.0398), confirming the initial finding of the

discovery case-control sample (Fig. 2B & Table 2).

Meta-analysis
Due to the different design of the study samples (case-control

and family-based), the permutation-based GSEA testing procedure

and explicitly the determination of gene-wise corrected p-values

could not directly be applied in a meta-analysis of all three

samples. Alternatively, we applied the two software toolkits

METAL and MAGENTA which were both specifically designed

for the application to meta-analyze data. Significant enrichment

for the first gene set was found (PMAGENTA,WMW = 0 0357).

This enrichment was not found above the 50th percentile as in

the discovery, but rather above the 75th percentile

(PMAGENTA,50 = 0.1052, PMAGENTA,75 = 0.0251; Fig. 2C &

Table 2). Thus, the effect of enrichment remained stable in the

meta-analysis.

For most genes, the SNP with minimal single-marker p-value

differed in the three analyzed samples (Table 3). For example,

rs12033461 was the best SNP for ESRRG in the family-based

sample, while it was rs11577585 in KORA-CC. The LD between

these two SNPs was r2 = 0 in the parents of the family-based

sample. Generally, these LDs were quite low (Table 3), so

association signals seem to be independent, and our gene-based

approach which considers large parts of common variation within

a gene might be a useful approach to handle multiple ancestral

mutations [32,33].

Discussion

The gene variants discovered by single-locus-oriented GWAS

have explained only about 1.5% of the total BMI variance so far

[2]. As GSEA approaches concentrate on the combined effects of

several loci to potentially reveal new insight into the genetic

impact, we performed a GSEA to analyze if autosomal nuclear-

encoded mitochondrial genes are enriched for association signals

for obesity. The three mitochondrial gene sets as well as the GSEA

and MAGENTA procedure were adopted from Segrè et al. [15].

While Segrè et al. [15] did not find enrichment in association with

T2DM and related glycemic traits, we observed enrichment for

obesity association signals in the gene set of the 16 regulators of

nuclear-encoded mitochondrial genes (gene set 1) in two indepen-

dent case-control GWAS data sets (total n = 1,834). However, the

enrichment was not detectable in a family-based GWAS sample of

705 obesity trios. The enrichment for obesity association signals

was found for the 50th percentile, i.e. gene adjusted p-values

between ,0.2 and 0.5. By applying MAGENTA to the discovery

sample, we also found enrichment above the 75th percentile

(Table 1). This observation was similarly present only in the meta-

analysis, but not in any of the confirmation samples individually.

Our results support the hypothesis that a GSEA may detect

combined association effects of several loci [3–7]. None of the
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above described 16 genes revealed significant association to obesity

in a single locus-oriented approach, as none of these genes has

been found in the list of 32 BMI loci reported in the latest and

largest meta-analysis so far [2].

It was not possible to identify one specific weight associated

candidate gene, as in both case-control approaches the SNPs/

genes with the lowest p-values differed (Table 3). Our finding

underscores that the combined effect of several loci leads to an

association with the investigated trait, rather than a single gene of

a set.

One limitation of our analysis is that it is based exclusively on

autosomal mitochondrial genes. According to the MitoCarta

compendium there are 1012 unique mitochondrial genes [13] of

which 13 are protein coding genes of mtDNA (1.3% of all

mitochondrial genes) and 31 are X-chromosomal (one is X/Y-

chromosomal; 3.1% of all mitochondrial genes). As most GWAS

primarily focus on autosomal SNPs, genes of mtDNA and sex

chromosomes were not included in the analysis of Segrè et al. [15].

For reasons of comparability we also only focused on autosomal

mitochondrial genes. However, due to the fact that both mtDNA

and sex-chromosomal genes represent less than 5% of all

mitochondrial genes, the impact of these genes on the enrichment

analysis might be small. Anyhow, variation in the mtDNA has

probably more relevant effects on the mitochondrial function than

variation in autosomal genes, as for instance mtDNA does not

comprise UTRs or introns. However, mtDNA SNPs are not the

focus of our GSEA.

Another limitation of our GSEA is that it is based on GWAS

data, i.e. common variants. Rare variants, which could have a

stronger impact on the investigated trait, are thus hardly addressed

in our analyses.

We evaluated the robustness of our results pertaining to the 16

nuclear regulators of mitochondrial function. Besides the leading-

edge fraction test several other statistical tests recommended were

performed (Wilcoxon-Mann-Whitney-test, Kolmogorov Smirnov

test, t-test) to demonstrate independence from the method choice.

Although the Kolmogorov Smirnov test of the discovery stage

revealed only nominal significance, results of all tests were similar

regarding significance within a fixed tested sample and gene set.

The MAGENTA software was additionally applied to each single

sample in order to maximally guarantee robustness (within each

sample) and comparability (between different samples and the

meta-analysis) of the results. Apart from a few exceptions, we

found high levels of agreement of the p-values determined by both

methods (leading-edge fraction test vs. MAGENTA) within a

sample (Table 1 & 2).

In addition to the robustness regarding method choice

another strength of our study was that we used both case-

control and family-based samples. We observed consistent

evidence for enrichment in two case-control samples but failed

Figure 1. Empirical cumulative distribution functions (ECDF) of Pg in four different gene sets in the Discovery. A case-control GWAS
sample of 453 (extremely) obese cases and 435 lean controls was analyzed. In each panel the grey line represents the ECDF of the uniform
distribution (null hypotheses of no association) and the black line represents the ECDF of the respective gene set. Pg, gene-wise corrected p-value.
doi:10.1371/journal.pone.0055884.g001
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to detect it in the family-based GWAS sample of 705 obesity

trios. Possibly the family-based sample was too small for a

confirmation. Moreover, if the effect was mainly driven by lean

and normal weight subjects, the frequencies of the variants

would be very low in the predominantly obese trio parents [34]

again resulting in power issues. A third explanation might be

genetic heterogeneity including both locus and allelic heteroge-

neity.

The 16 regulators of nuclear-encoded mitochondrial genes

(gene set 1) are transcription factors and/or co-activators (Table 3).

Although there are hints of disturbed mitochondria or mitochon-

drial function among obese individuals [9,10], from the findings of

Figure 2. Empirical cumulative distribution functions (ECDF) of Pg in all autosomal genes and gene set 1. For independent confirmation
of the initial finding, GSEA was performed in 705 obesity trios (A) and in 463 obese cases and 483 normal weight or lean controls of the KORA-CC
sample (B). In addition, a meta-analysis of all three study samples (from Discovery and Confirmation) was performed (C). In each panel the grey line
represents the ECDF of the uniform distribution (null hypotheses of no association) and the black line represents the ECDF of the respective gene set.
Pg, gene-wise corrected p-value.
doi:10.1371/journal.pone.0055884.g002
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this GSEA, we cannot conclude if or to what extent these nuclear-

encoded regulators of gene set 1 are involved in mitochondrial

disturbance. There are mouse models for nine of the 16 genes

which showed that knockout (k.o.) or alterations in the expression

of these genes are related to leanness or related traits (Table 4). For

example, Nrip1 k.o. mice are viable and morphologically normal,

but 15–20% lighter than the wild-type or heterozygous littermates

[35]. Nrf2 ( = Gabpa) k.o. mice are characterized by decreased

adipose tissue mass and protected against a high fat diet induced

obesity. In addition, Sirt1 transgenic (knockin) mice were lighter

than wild type littermates and had less white adipose tissue per

body weight [36]. The enrichment of association signals in gene set

1 supports the findings from the above mentioned animal studies

that these genes could be potential candidate genes for obesity/

leanness and related traits. Similarly, in a recent GSEA,

Vimaleswaren et al. [37] found enrichment of association signals

for a gene set of 547 obesity-susceptibility candidate genes in a

large meta-analysis of 123,564 individuals [2].

In summary, a GSEA on autosomal nuclear-encoded genes

relevant for mitochondrial function revealed that a gene set of 16

nuclear encoded regulators of mitochondrial genes was enriched

for weak obesity association signals. Initially, this enrichment was

found in a case-control approach and independently confirmed in

another case-control sample.

Supporting Information

Table S1 Basic phenotypical characteristics of the
family-based, the case-control and the population-based
GWAS sample.

(DOC)

Table S2 Quality control of SNPs.

(DOC)
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Table 4. Animal models (knockout, alterations in the expression and mutations) of the nuclear regulators of mitochondrial genes
(gene set 1) in relation to obesity or related traits.

Gene Phenotype Reference

ESRRA ERRa2/2 mice with reduced body weight and fat mass, and resistance to
a high-fat diet-induced obesity

[38]

ESRRG No body weight/body fat associated phenotype

GABPA = NRF2; targeted knock-out (k.o.) of Nrf2 in mice leads to 20% lower body weight
after ad libitum diet compared to wild type littermates, lower adipose tissue mass,
smaller adipocytes and protects against weight gain and obesity otherwise
induced by a high fat diet

[39]

GABPB1 No body weight/body fat associated phenotype

GABPB2 No body weight/body fat associated phenotype

MEF2A No body weight/body fat associated phenotype

MYC Transgenic mice overexpressing c-myc in the liver show lower body weight
increase and lower fat accumulation in adipose tissue compared to control
mice on a high fat diet of 3 months

[40]

NRF1 No body weight/body fat associated phenotype

NRIP1 Formerly known as RIP140; k.o. mice viable and morphologically normal,
but 15–20% less heavier than wild-type or heterozygous littermates

[35]

PPARA PPARa-null mice on two different backgrounds (Sv/129 or C57BL/6N) were not
obese, but had hepatic accumulation of fat and larger gonadal adipose stores
compared to wild type controls

[41]

PPARD PPARd-null mice are smaller than controls and have smaller gonadal fat stores [42]

PPARGC1A Female PGC-1a2/2 mice show increased body fat and hepatic steatosis after
short term starvation

[43]

PPARGC1B PGC-1b k.o. mice with reduced body weight and fat mass [44]

SIRT1 Sirt1 transgenic (knockin) mice are lighter and have less white adipose tissue
per body weight than wild type littermates

[36]

SP1 No body weight/body fat associated phenotype

YY1 No body weight/body fat associated phenotype

ESRRA, Estrogen related receptor alpha; ESRRG, Estrogen related receptor gamma; GABPA, GA-binding protein alpha subunit; GABPB1, GA-binding protein beta subunit
1; GABPB2, GA-binding protein beta subunit 2; MEF2A, Myocyte-specific enhancer factor 2A; MYC, Myelocytomatosis viral oncogene homolog (avian); NRF1, Nuclear
respiratory factor 1; NRIP1, Nuclear receptor-interacting protein 1; PPARA, Peroxisome proliferator-activated receptor alpha; PPARD, Peroxisome proliferator-activated
receptor delta; PPARGC1A, Peroxisome proliferator-activated receptor gamma coactivator 1 alpha; PPARGC1B, Peroxisome proliferator-activated receptor gamma
coactivator 1 beta; SIRT1, Sirtuin 1; SP1, Specificity protein 1; YY1, Transcriptional repressor protein YY1.
doi:10.1371/journal.pone.0055884.t004
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Verzehrstudie einschließlich einer Übersicht zu relevanten Einflussfaktoren.
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