407 research outputs found

    Method of self-similar factor approximants

    Full text link
    The method of self-similar factor approximants is completed by defining the approximants of odd orders, constructed from the power series with the largest term of an odd power. It is shown that the method provides good approximations for transcendental functions. In some cases, just a few terms in a power series make it possible to reconstruct a transcendental function exactly. Numerical convergence of the factor approximants is checked for several examples. A special attention is paid to the possibility of extrapolating the behavior of functions, with arguments tending to infinity, from the related asymptotic series at small arguments. Applications of the method are thoroughly illustrated by the examples of several functions, nonlinear differential equations, and anharmonic models.Comment: Latex file, 21 pages, 4 tables, 4 figure

    Non-perturbative calculations for the effective potential of the PTPT symmetric and non-Hermitian (gϕ4)(-g\phi^{4}) field theoretic model

    Get PDF
    We investigate the effective potential of the PTPT symmetric (gϕ4)(-g\phi^{4}) field theory, perturbatively as well as non-perturbatively. For the perturbative calculations, we first use normal ordering to obtain the first order effective potential from which the predicted vacuum condensate vanishes exponentially as GG+G\to G^+ in agreement with previous calculations. For the higher orders, we employed the invariance of the bare parameters under the change of the mass scale tt to fix the transformed form totally equivalent to the original theory. The form so obtained up to G3G^3 is new and shows that all the 1PI amplitudes are perurbative for both G1G\ll 1 and G1G\gg 1 regions. For the intermediate region, we modified the fractal self-similar resummation method to have a unique resummation formula for all GG values. This unique formula is necessary because the effective potential is the generating functional for all the 1PI amplitudes which can be obtained via nE/bn\partial^n E/\partial b^n and thus we can obtain an analytic calculation for the 1PI amplitudes. Again, the resummed from of the effective potential is new and interpolates the effective potential between the perturbative regions. Moreover, the resummed effective potential agrees in spirit of previous calculation concerning bound states.Comment: 20 page

    Self-similar factor approximants for evolution equations and boundary-value problems

    Full text link
    The method of self-similar factor approximants is shown to be very convenient for solving different evolution equations and boundary-value problems typical of physical applications. The method is general and simple, being a straightforward two-step procedure. First, the solution to an equation is represented as an asymptotic series in powers of a variable. Second, the series are summed by means of the self-similar factor approximants. The obtained expressions provide highly accurate approximate solutions to the considered equations. In some cases, it is even possible to reconstruct exact solutions for the whole region of variables, starting from asymptotic series for small variables. This can become possible even when the solution is a transcendental function. The method is shown to be more simple and accurate than different variants of perturbation theory with respect to small parameters, being applicable even when these parameters are large. The generality and accuracy of the method are illustrated by a number of evolution equations as well as boundary value problems.Comment: Latex file, 27 pages, 2 figures, 5 table

    Local Hidden Variables Underpinning of Entanglement and Teleportation

    Get PDF
    Entangled states whose Wigner functions are non-negative may be viewed as being accounted for by local hidden variables (LHV). Recently, there were studies of Bell's inequality violation (BIQV) for such states in conjunction with the well known theorem of Bell that precludes BIQV for theories that have LHV underpinning. We extend these studies to teleportation which is also based on entanglement. We investigate if, to what extent, and under what conditions may teleportation be accounted for via LHV theory. Our study allows us to expose the role of various quantum requirements. These are, e.g., the uncertainty relation among non-commuting operators, and the no-cloning theorem which forces the complete elimination of the teleported state at its initial port.Comment: 24 pages, 1 figure, accepted Found. Phy

    20 years of the Atlantic Meridional Transect - AMT

    Get PDF
    The AMT (www.amt-uk.org) is a multidisciplinary programme which undertakes biological, chemical, and physical oceanographic research during an annual voyage between the UK and a destination in the South Atlantic such as the Falkland Islands, South Africa, or Chile. This transect of >12,000 km crosses a range of ecosystems from subpolar to tropical, from euphotic shelf seas and upwelling systems, to oligotrophic mid-ocean gyres. The year 2015 has seen two milestones in the history of the AMT: the achievement of 20 years of this unique ocean going programme and the departure of the 25th cruise on the 15th of September. Both of these events were celebrated in June this year with an open science conference hosted by the Plymouth Marine Laboratory (PML) and will be further documented in a special issue of Progress in Oceanography which is planned for publication in 2016. Since 1995, the 25 research cruises have involved 242 sea-going scientists from 66 institutes representing 22 countries. AMT was designed from the outset to be a collaborative programme. It was originally conceived by Jim Aiken, Patrick Holligan, Roger Harris, and Dave Robins with Chuck McClain and Chuck Trees at NASA to test and ground truth satellite algorithms of ocean color. The opportunities offered by this initiative meant that this series of repeated biannual cruises rapidly developed into a coordinated study of ocean biodiversity, biogeochemistry, and ocean/atmosphere interactions

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
    corecore