102 research outputs found
Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run
The first observing run of Advanced LIGO spanned 4 months, from September 12,
2015 to January 19, 2016, during which gravitational waves were directly
detected from two binary black hole systems, namely GW150914 and GW151226.
Confident detection of gravitational waves requires an understanding of
instrumental transients and artifacts that can reduce the sensitivity of a
search. Studies of the quality of the detector data yield insights into the
cause of instrumental artifacts and data quality vetoes specific to a search
are produced to mitigate the effects of problematic data. In this paper, the
systematic removal of noisy data from analysis time is shown to improve the
sensitivity of searches for compact binary coalescences. The output of the
PyCBC pipeline, which is a python-based code package used to search for
gravitational wave signals from compact binary coalescences, is used as a
metric for improvement. GW150914 was a loud enough signal that removing noisy
data did not improve its significance. However, the removal of data with excess
noise decreased the false alarm rate of GW151226 by more than two orders of
magnitude, from 1 in 770 years to less than 1 in 186000 years.Comment: 27 pages, 13 figures, published versio
GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10: 11: 58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2(-6.0)(+8.4)M-circle dot and 19.4(-5.9)(+5.3)M(circle dot) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, chi(eff) =
-0.12(-0.30)(+0.21) . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880(-390)(+450) Mpc corresponding to a redshift of z = 0.18(-0.07)(+0.08) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m(g) <= 7.7 x 10(-23) eV/c(2). In all cases, we find that GW170104 is consistent with general relativity
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10−5 and 9.4×10−4 Mpc−3 yr−1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves
A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from
isolated neutron stars within the Orion spur towards both the inner and outer
regions of our Galaxy. As gravitational waves interact very weakly with matter,
the search is unimpeded by dust and concentrations of stars. One search disk
(A) is in diameter and centered on
, and the other
(B) is in diameter and centered on
. We explored the
frequency range of 50-1500 Hz and frequency derivative from to Hz/s. A multi-stage, loosely coherent search program allowed probing
more deeply than before in these two regions, while increasing coherence length
with every stage.
Rigorous followup parameters have winnowed initial coincidence set to only 70
candidates, to be examined manually. None of those 70 candidates proved to be
consistent with an isolated gravitational wave emitter, and 95% confidence
level upper limits were placed on continuous-wave strain amplitudes. Near
Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized
strain amplitude of , while at the high end of our
frequency range we achieve a worst-case upper limit of for
all polarizations and sky locations.Comment: Fixed minor typo - duplicate name in the author lis
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
GW150914: First results from the search for binary black hole coalescence with Advanced LIGO
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser
Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed
the binary black hole merger GW150914. We report the results of a
matched-filter search using relativistic models of compact-object binaries that
recovered GW150914 as the most significant event during the coincident
observations between the two LIGO detectors from September 12 to October 20,
2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24
and a false alarm rate estimated to be less than 1 event per 203 000 years,
equivalent to a significance greater than 5.1 {\sigma}.Comment: 20 pages, 10 figure
THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914
A transient gravitational-wave signal, GW150914, was identi
fi
ed in the twin Advanced LIGO detectors on 2015
September 2015 at 09:50:45 UTC. To asse
ss the implications of this discovery,
the detectors remained in operation with
unchanged con
fi
gurations over a period of 39 days around the time of t
he signal. At the detection statistic threshold
corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational
data is estimated to have a false-alarm rate
(
FAR
)
of
<
́
--
4.9 10 yr
61
, yielding a
p
-value for GW150914 of
<
́
-
210
7
. Parameter estimation follo
w-up on this trigger identi
fi
es its source as a binary black hole
(
BBH
)
merger
with component masses
(
)(
)
=
-
+
-
+
mm
M
,36,29
12
4
5
4
4
at redshift
=
-
+
z
0.09
0.04
0.03
(
median and 90% credible range
)
.
Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only
GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search
FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a
90% credible range of merger rates between
–
--
2
53 Gpc yr
31
(
comoving frame
)
. Incorporating all search triggers that
pass a much lower threshold while accounting for the uncerta
inty in the astrophysical origin of each trigger, we estimate
a higher rate, ranging from
–
--
13 600 Gpc yr
31
depending on assumptions about the BBH mass distribution. All
together, our various rate estimat
es fall in the conservative range
–
--
2
600 Gpc yr
31
GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2
We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are
31.
2
+
8.4
−
6.0
M
⊙
and
19.
4
+
5.3
−
5.9
M
⊙
(at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane,
χ
eff
=
−
0.1
2
+
0.21
−
0.30
. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is
88
0
+
450
−
390
Mpc
corresponding to a redshift of
z
=
0.1
8
+
0.08
−
0.07
. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to
m
g
≤
7.7
×
10
−
23
eV
/
c
2
. In all cases, we find that GW170104 is consistent with general relativity
An improved analysis of GW150914 using a fully spin-precessing waveform model
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015 [1]. Reference presented parameter estimation [2] of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and a 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [2], and we quote updated component masses of and (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate and a secondary spin estimate at 90% probability. Reference [2] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted
Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data
We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100–1500 Hz and with a frequency time derivative in the range of [−1.18,+1.00]×10−8 Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10−25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10−24. Both cases refer to all sky locations and entire range of frequency derivative values
- …