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We report results of a wideband search for periodic gravitational waves from isolated neutron stars
within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational
waves interact very weakly with matter, the search is unimpeded by dust and concentrations of
stars. One search disk (A) is 6.87° in diameter and centered on 20"10™54.71% + 33°33'25.29", and
the other (B) is 7.45° in diameter and centered on 8"35™20.61° — 46°49'25.151”. We explored the
frequency range of 50-1500 Hz and frequency derivative from 0 to —5 x 1072 Hz/s. A multi-stage,
loosely coherent search program allowed probing more deeply than before in these two regions, while
increasing coherence length with every stage.

Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to
be examined manually. None of those 70 candidates proved to be consistent with an isolated
gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave
strain amplitudes. Near 169 Hz we achieve our lowest 95% CL upper limit on worst-case linearly
polarized strain amplitude ho of 6.3 x 10725, while at the high end of our frequency range we achieve
a worst-case upper limit of 3.4 x 1072* for all polarizations and sky locations.

I. INTRODUCTION

In this paper we report the results of a deep search
along the Orion spur for continuous, nearly monochro-
matic gravitational waves in data from LIGO’s sixth sci-
ence (S6) run. The search covered frequencies from 50 Hz
through 1500 Hz and frequency derivatives from 0 Hz/s
through —5 x 1079 Hz/s.

Our solar system is located in the Orion spur — a

spoke-like concentration of stars connecting the Sagittar-
ius and Perseus arms of our galaxy. Since known pulsars
tend to be found in concentrations of stars such as galac-
tic arms and globular clusters [I},[2], the Orion spur offers
a potential target. This search explores a portion of the
Orion spur towards the inner regions of our Galaxy as
well as a nearly opposite direction covering the Vela neb-
ula.

A number of searches have been carried out previ-



ously on LIGO data [3HI1], including coherent searches
for graviational waves from known radio and X-ray pul-
sars. An Einstein@Home search running on the BOINC
infrastructure [I2] has performed blind all-sky searches
on data from LIGO’s S4 and S5 science runs [I3HI5].

The results in this paper were produced with the Pow-
erFlux search code. It was first described in [3] together
with two other semi-coherent search pipelines (Hough,
Stackslide). The sensitivities of all three methods were
compared, with PowerFlux showing better results in fre-
quency bands lacking severe spectral artifacts. A sub-
sequent article [5] based on the data from the S5 run
featured improved upper limits and a systematic follow-
up detection search based on the Loosely coherent algo-
rithm [16].

In this paper we establish the most sensitive wide-
band upper limits to date in the frequency band 50-1500
Hz. Near 169 Hz our strain sensitivity to a neutron star
with the most unfavorable sky location and orientation
(“worst case”) yields a 95% confidence level upper limit
in intrinsic strain amplitude of 6.3 x 1072%, while at the
high end of our frequency range we achieve a worst-case
upper limit of 3.4 x 10724,

Starting from 94,000 outliers surviving the first stage
of the pipeline, only 70 survived the fourth and final stage
of the automated search program and were then exam-
ined manually for instrumental contamination. Of the 70
outliers found, several do not have an easily identifiable
instrumental cause.

Deeper follow-ups of the outliers do not lead to in-
creased statistical significance, as would be expected for
a GW-emitting isolated neutron star. Accurate estima-
tion of the probability for a statistical fluctuation to lead
to the loudest of these outliers, using simulation of the
search on independent data sets, is computationally in-
feasible, but a rough (conservative) estimate (described
in section [V]) is O(10%). Given this modest improbabil-
ity and given the inconsistency of deep follow-up results
with the isolated signal model, we conclude that statisti-
cal fluctuations are a likely explanation for these outliers.

As the deeper follow-up searches assumed a tight co-
herence length, this leaves open a narrow window for the
outliers to be caused by neutron star with an additional
frequency modulation such as would be observed if it
were in long-period orbit. The enlargement of parameter-
space needed to cover this possibility makes it impractical
to test this hypothesis with S6 data.

II. LIGO INTERFEROMETERS AND S6
SCIENCE RUN

The LIGO gravitational wave network consists of two
observatories, one in Hanford, Washington and the other
in Livingston, Louisiana, separated by a 3000-km base-
line. During the S6 run each site housed one suspended
interferometer with 4-km long arms.

Although the sixth science run spanned more than one

year period of data acquisition, the analysis in this pa-
per used data only from GPS 951534120 (2010 Mar 02
03:01:45 UTC) through GPS 971619922 (2010 Oct 20
14:25:07 UTC), selected for good strain sensitivity and
noise stationarity. Since interferometers sporadically fall
out of operation (“lose lock”) due to environmental or
instrumental disturbances or for scheduled maintenance
periods, the data set is not contiguous. For the time span
used in the search the Hanford interferometer H1 had a
duty factor of 53%, while the Livingston interferometer
L1 had a duty factor of 51% . The strain sensitivity in
search band was not uniform, exhibiting a ~ 50% daily
variation from anthropogenic activity as well as gradual
improvement toward the end of the run [19 21].

A thorough description of instruments and data can
be found in [20].

IIT. SEARCH REGION

All-sky searches for continuous gravitational waves in
data produced by modern interferometers are computa-
tionally limited, with the established upper limits an or-
der of magnitude away from what is theoretically pos-
sible given impractically large computational resources.
This limitation arises from the rapid increase in compu-
tational cost with coherence time of the search, because
of both the necessarily finer gridding of the sky and the
need to search over higher-order derivatives of the signal
frequency. Hence there is a tradeoff between searching
the largest sky area with reduced sensitivity of all-sky
search, and pushing for sensitivity in a smaller region.

The loosely coherent search program was initially de-
veloped for follow-up of outliers from an all-sky semi-
coherent search [5]. For this search we have chosen to
isolate two small regions and take advantage of the en-
hanced sensitivity of the loosely coherent search. Besides
the gain from increasing coherence length we also ben-
efit from search regions (listed in Table [I) with strong
Dopper-modulated frequency evolution and greater re-
jection of instrumental artifacts.

Known radio pulsars tend to cluster along the spiral
arms, in globular clusters, and in other star-forming re-
gions. To increase the chances of discovering a continuous
wave gravitational source we selected regions where one
can expect a clustering of neutron star sources in line-of-
sight cones determined by the search area and sensitivity
reach of the detector.

The positions of known pulsars from the ATNF catalog
(22 23], retrieved 2015 Jan 29) and the expected reach
of semicoherent searches are illustrated in Figure [1| on
the galactic background [24]. Only pulsars with galac-
tic latitude less than 0.06 rad are shown in the figure.
We observe loose association with galactic arms, which
is skewed by observational bias. In particular, the area
searched by Parkes survey marked as a blue sector con-
tains many more pulsars than elsewhere on the map.

The expected reach of the all-sky search in S6 data,



Search region ~ RA DEC Radius RA DEC Radius
rad rad rad hours deg deg

A 5.283600 0.585700 0.060 20"10™54.715° 33°33/29.297"  3.438

B 2.248610 -0.788476  0.065 8"35™20.607° —46°49'25.151"  3.724

TABLE 1. Area of sky covered by this search.

assuming a neutron star ellipticity of 1079, is illustrated
by the pink circle. A computationally feasible spotlight
search can reach twice as far, but the globular clusters
and galactic center remain out of its reach in the S6 data
set.

A closer alternative is to look in the local neighbour-
hood of the Sun along the Orion spur — a grouping of
stars that connects the Perseus and Sagittarius arms of
our galaxy. For this search we have chosen two regions
(Table , exploring two nearly opposite directions along
the Orion spur.

Region A was chosen to point near Cygnus X, with re-
gion B pointing toward the Vela nebula[l] A recent study
of OB stars and their ramificatons for local supernova
rates support these two directions as potentially promis-
ing, along with several other star-forming regions [2]. The
choice of sky area to search for region B is more ambigu-
ous because of larger extent of Orion spur — the figure ]
shows two grouping of stars towards the Vela Molecular
Ridge and Perseus transit directions. We have chosen
the direction towards Vela as it coincides with star form-
ing region with several known neutron stars. In order
to better cover Vela nebula the region B search radius is
slightly larger than that of region A.

IV. SEARCH ALGORITHM

The results presented in this paper were obtained with
the loosely coherent search, implemented as part of the
PowerFlux program. We have used the follow-up proce-
dure developed for the all-sky S6 search, but where the
first loosely coherent stage is applied directly to the en-
tire A and B regions. A detailed description of the loosely
coherent code can be found in [5] [16].

Mathematically, we transform the input data to the
Solar System barycentric reference frame, correct for pu-
tative signal evolution given by frequency, spindown and
polarization parameters, and then apply a low-pass filter
which bandwidth determines the coherence length of the
search. The total power in the computed time series is
then compared to power obtained for nearby frequency
bins in a 0.25 Hz interval.

A signal-to-noise ratio and an upper limit are derived
for each frequency bin using a universal statistic method
[25] that establishes 95% CL upper limit for an arbitrary
underlying noise distribution. If the noise is Gaussian
distributed the upper limits are close to optimal values
that would be produced with assumption of Gaussianity.

— S6 all-sky
—— S6 spotlight search
PARKES
= = Orion spur region Sh2-289

+ Pulsar (Gb<0.06 rad)

Turner 5

Nebula

FIG. 1. Distribution of known pulsars in the Milky Way
galaxy. The Orion spur region (marked by dashed rectangle)
connects Perseus and Sagittarius galactic arms and includes
regions marked A and B. The ranges shown for gravitational
wave searches correspond to 1500 Hz frequency and an el-
lipticity of 107®. The arc shown for the PARKES survey
[1] shows search area, not the range. The green stars show
locations of pulsars from the ATNF database (retrieved on
January 29, 2015, [22]) with galactic latitude Gb below 0.06
radians. The background image is due to R. Hurt [24] (color
online)

For non-Gaussian noise the upper limits are conserva-
tively correct.

Maxima of the SNR and upper limits over marginalized
search parameters are presented in the plots and [

The search results described in this paper assume a
classical model of a spinning neutron star with a fixed,
non-axisymmetric mass quadrupole that produces circu-
larly polarized graviational waves along the rotation axis
and linearly polarized radiation in the directions perpen-
dicular to the rotation axis. The assumed signal model



is thus

B() = ho (Fi (10,8, 9) 22220 cos(@(1))+
+ Fy(t, v, 8,4b) cos() sin(@(t))) ,

where F; and Fx characterize the detector responses to
signals with “4” and “x” quadrupolar polarizations, the
sky location is described by right ascension o and decli-
nation ¢, ¢ describes the inclination of the source rotation
axis to the line of sight, and the phase evolution of the
signal is given by the formula

O(t) = 27 (feource(t — to) + [V (t —10)*/2) + 6. (2)

with fsource being the source frequency and f(*) denoting
the first frequency derivative (for which we also use the
abbreviation spindown). ¢ denotes the initial phase with
respect to reference time tg. t is time in the solar sys-
tem barycenter frame. When expressed as a function of
local time of ground-based detectors it includes the sky-
position-dependent Doppler shift. We use ¥ to denote
the polarization angle of the projected source rotation
axis in the sky plane.

As a first step, individual SFTs (short Fourier trans-
forms) with high noise levels or large spikes in the under-
lying data are removed from the analysis. For a typical
well-behaved frequency band, we can exclude 8% of the
SFTs while losing only 4% of the accumulated statistical
weight. For a band with large detector artifacts (such as
instrumental lines arising from resonant vibration of mir-
ror suspension wires), however, we can end up removing
most, if not all, SFTs. As such bands are not expected
to have any sensitivity of physical interest they were ex-
cluded from the upper limit analysis (Table [II)).

Description

60 hz line 59.75-60.25 Hz

Violin modes 343.25-343.75 Hz, 347 Hz
Second harmonic of violin modes 687.00-687.50 Hz

Third harmonic of violin modes 1031.00-1031.25 Hz

Category

TABLE II. Frequency regions excluded from upper limit anal-
ysis. These are separated into power line artifacts and har-
monics of “violin modes” (resonant vibrations of the wires
which suspend the many mirrors of the interferometer).

The detection pipeline used in this search was devel-
oped for an S6 all-sky analysis and is an extension of the
pipeline described in [5]. It consists of several stages em-
ploying loosely coherent [16] search algorithm with pro-
gressively stricter coherence requirements. The parame-
ters of the pipeline are described in Table [[T]}

Unlike in the all-sky analysis the first stage is used to
establish upper limits. In effect, instead of investigat-
ing all-sky outliers we have simply pointed the follow-up
pipeline along the direction of Orion spur. This allowed
us to increase the sensitivity by a factor of 2. The rest
of the pipeline is unmodified.

The frequency refinement parameter is specified rel-
ative to the 1/1800 Hz frequency bin width used in
SFTs that serve as input to the analysis. Thus at
the last stage of follow-up our frequency resolution is
(1800 s-32)~1 = 17 uHz. However, because of the degen-
eracy between frequency, sky position and spindown, the
accuracy is not as good and the frequency can deviate
by up to 50 pHz in 95% of injections. This degeneracy is
mostly due to Doppler shifts from Earth orbital motion
and is thus common to both interferometers.

The phase coherence parameter § is described in de-
tail in [I6]. It represents the amount of allowed phase
variation over a 1800 s interval. We are thus sensitive
both to the expected sources with ideal frequency evo-
lution (equation [2)) and unexpected sources with a small
amount of frequency modulation.

The sky refinement parameter is relative to the sky res-
olution sufficient for the plain semi-coherent PowerFlux
mode and was necessary because the improved frequency
resolution made the search more sensitive to Doppler
shift.

Stages one and two used the same parameters, with the
only difference being that data acquired at nearby times
by different interferometers were combined without re-
gard to phase in stage 1, but we took phase into account
in stage 2. In the ideal situation, when both detectors
are operational at the same time and at the same sen-
sitivity, one would expect an increase in SNR by /2 by
including phase information. In practice, the duty cycle
did not overlap perfectly and, most importantly, it was
quite common for one interferometer to be more sensitive
than another. Thus, to keep an outlier, we only required
that SNR did not decrease when transitioning to stage 2.

Subsequent stages used longer coherence times, with
correspondingly finer sky and frequency resolutions.

The analysis data set was partitioned in time into 7
parts of equal duration numbered 0 through 6. As an
intermediate product we have obtained upper limits and
outliers of each contiguous sequence of parts. For exam-
ple, a segment [1,5] would consist of the middle 5/7 of the
entire data set. This allowed us to identify outliers that
exhibited enhanced SNR on a subset of data and thus
were more likely to be induced by instrumental artifacts

(Tables [V] and [VI)).

V. GAUSSIAN FALSE ALARM EVENT RATE

The computation of the false alarm rate for the out-
liers passing all stages of the pipeline is complicated by
the fact that most outliers are caused by instrumental
artifacts for which we do not know the underlying prob-
ability distribution. In principle, one could repeat the
analysis many times using non-physical frequency shifts
(which would exclude picking up a real signal by acci-
dent) in order to obtain estimates of false alarm rate,
but this approach incurs prohibitive computational cost.
Even assuming a perfect Gaussian background, it is dif-
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FIG. 2. S6 95% CL upper limits on signal strain amplitude. The upper (green) curve shows worst case upper limits in analyzed
0.25 Hz bands (see Table [] for list of excluded bands). The lower (grey) curve shows upper limits assuming circularly polarized
source. The values of solid points and circles (marking power line harmonics for circularly and linear polarized sources) are not
considered reliable. They are shown to indicate contaminated bands. (color online)

Stage Instrument sum Phase coherence Spindown step Sky refinement Frequency refinement SNR increase

rad Hz/s %
1 incoherent /2 1.0 x 10710 1/4 1/8 NA
2 coherent /2 5.0x 107 1/4 1/8 0
3 coherent /4 2.5 x 107! 1/8 1/16 12
4 coherent /8 5.0 x 1072 1/16 1/32 12

TABLE III. Analysis pipeline parameters. All stages used the loosely coherent algorithm for demodulation. The sky and
frequency refinement parameters are relative to values used in the semicoherent PowerFlux search.

ficult to model the pipeline in every detail to obtain an
accurate estimate of the false alarm rate, given the gaps
in interferometer operations and non-stationary noise.

Instead, we compute a figure of merit that overesti-
mates the actual Gaussian false alarm event rate. We

simplify the problem by assuming that the entire anal-
ysis was carried out with the resolution of the very last
stage of follow-up and we are merely triggering on the
SNR value of the last stage. This is extremely conserva-
tive as we ignore the consistency requirements that allow



the outlier to proceed from one stage of the pipeline to
the next, actual false alarm rate could be lower.

The SNR of each outlier is computed relative to the
loosely coherent power sum for 501 frequency bins spaced
at 1/1800 Hz intervals (including the outlier) but with
all the other signal parameters held constant. The spac-
ing assures that any sub-bin leakage does not affect the
statistics of the power sum.

As the power sums are weighted, the statistics should
follow a weighted x? distribution, the exact shape of
which is difficult to characterize analytically because the
weights depend on sky position, gaps in acquired data,
background noise in the SFTs and the polarization pa-
rameters of the outlier.

To simplify computation we assume that we are deal-
ing with a simple x2 distribution with the number of
degrees of freedom given by the timebase divided by the
coherence length and multiplied by a conservative duty
factor reflecting interferometer uptime and the worst-case
weights from linearly-polarized signals.

Thus to find the number of degrees of freedom we will
use the formula

__ timebase - ¢ - duty factor
1800 s - 27

3)

with the duty factor taken to be 0.125 and ¢ giving the
phase coherence parameter of the loosely coherent search.
The duty factor was chosen to allow for only 50% interfer-
ometer uptime and only one quarter of the data receiving
high weights from our weighting scheme, which weights
the contribution of data inversely as the square of the
estimated noise [I7] [1§].

The number of search templates that would be needed
if the last stage of follow-up were used on the entire search
region is conservatively (over)estimated as

i =13

K =5.8x10"
5-8 X 10" 1100259 — 1400

(4)

where fy and f; (in Hz) describe the frequency band of
interest. For any particular 0.25 Hz search band the num-
ber of templates scales quadratically in frequency due to
linearly growing influence of Doppler shifts. Thus the
integrated frequency dependence is cubic. The scaling
factor 5.8 x 107 was obtained by counting the number
of templates for a particular PowerFlux instance that
searched from 1400 Hz to 1400.25 Hz. For the entire
analysis fo = 50 Hz and f; = 1500 Hz, which yields
K = 1.3 x 10" templates, without accounting for tem-
plate overlap.

Thus we define the outlier figure of merit describing
Gaussian false alarm event rate as

GFA=K P (N + SNR - V2N; N) (5)

where N defines the number of degrees of freedom as
given by equation |3} P,2(x; N) gives the probability for

10

a x? distribution with N degrees of freedom to exceed z,
and K describes the estimated number of templates.

We point out that the GFA is overly conservative when
applied to frequency bands with Gaussian noise, but is
only loosely applicable to bands with detector artifacts,
which can affect both the estimate of the degrees of free-
dom of the underlying distribution and the assumption
of uncorrelated underlying noise.
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FIG. 3. Range of the PowerFlux search for neutron stars
spinning down solely due to graviational waves. This is a
superposition of two contour plots. The grey and red solid
lines are contours of the maximum distance at which a neu-
tron star in optimum orientation could be detected as a func-
tion of gravitational-wave frequency f and its derivative f.
The dashed lines are contours of the corresponding elliptic-
ity e(f, f). The fine dotted line marks the maximum spin-
down searched. Together these quantities tell us the maxi-
mum range of the search in terms of various populations (see
text for details). In particular, at 1500 Hz we are sensitive
to stars with ellipticity of 5 x 1077 up to 1 kpc away. (color
online)

VI. RESULTS

Stage Region A Region B

1 43884 51027
2 7921 9152
3 510 566
4 37 33

TABLE IV. Outlier counts found at each stage of follow up.

PowerFlux produces 95% confidence level upper limits



for individual templates, where each template represents
a particular value of frequency, spindown, sky location
and polarization. The results are maximized over sev-
eral parameters, and a correction factor is applied to ac-
count for possible mismatches between a true signal and
sampled parameters. Figure [2] shows the resulting up-
per limits maximized over the analyzed spindown range,
over the search regions and, for the upper curve, over all
sampled polarizations. The lower curve shows the upper
limit for circular polarized signals alone.

The numerical data for this plot can be obtained sep-
arately [20].

The regions near harmonics of the 60 Hz power mains
frequency are shown as circles.

Figure [3| provides an easy way to judge the astrophys-
ical range of the search. We have computed the implied
spindown solely due to gravitational emission at various
distances, as well as corresponding ellipticity curves, as-
suming a circularly polarized signal. This follows formu-
las in paper [3]. For example, at the highest frequency
sampled, assuming ellipticity of 5 x 107 (which is well
under the maximum limit in [27, 28]) we can see as far
as 1000 parsecs.

In each search band, including regions with detector ar-
tifacts, the follow-up pipeline was applied to outliers sat-
isfying the initial coincidence criteria. The outlier statis-
tics are given in Table [[V] The outliers that passed all
stages of the automated pipeline are listed in Table [V] for
the A direction and Table [Vl for the B direction. Each of
these outliers was inspected manually and tested against
further criteria to determine whether it was convincingly
due to a source in the targeted astrophysical population.

Tables [V| and list outlier index (an identifier used
during follow-up), signal-to-noise ratio, decimal loga-
rithm of Gaussian false alarm as computed by formula
the contiguous segment of data where the outlier had
the highest SNR (see below), frequency, spindown, right
ascension and declination, as well as a summary of man-
ual follow-up conclusions.

The segment column describes the persistence of the
outlier throughout the analysis. The data to be analyzed
was divided into seven equal-duration segments labeled 0
through 6. For a continuous signal, the maximum SNR is
achieved by integrating all segments: this is indicated by
the notation [0,6]. For a transient artifact [29], one can
achieve higher SNR by analyzing only those segments
when it was on. This case is indicated by noting the con-
tinuous set of segments that gives the largest SNR: e.g.
[1,5] if a higher SNR is achieved by dropping the first
and last segment. Note, however, that an astrophysical
signal such as a long-period binary may also appear more
strongly in some segments than others, and thus could
have a segment notation other than [0,6]. The same will
be true of a strong signal outside of the search area on
the sky, whose Doppler shifts happen to align with the
target area’s over some segment of time. This occurs, for
instance, with outliers A1 and A3, which were generated
by a strong simulated signal outside of the search area.
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For a low SNR continuous signal it is also possible for
the background noise to randomly align in such a way
that the SNR over [0,6] segment is slightly lower than on
a smaller subset. Our simulations show that 98.5% of
injections achieve maximum SNR over one of [0,6], [0,5]
or [1,6] segments.

Outliers marked as non-Gaussian were found to lie in
bands whose statistics deviated from Gaussian noise, ac-
cording to the following criterion: the excess kurtosis of
501 bins around the outlier was smaller than —1.05. The
probability of Gaussian sample having this excess kurto-
sis is smaller than 1076,

If manual inspection of an outlier indicated that it
overlaps with a strong spectral disturbance in one of the
detectors, this is noted in the tables. Disturbances might
be either narrow lines, or steep slopes or edges character-
istic of wandering lines or the wings of nearby spectral
features. When such contamination is manifestly obvious
under visual inspection, it is likely that the outlier was
due to that artifact rather than an astrophysical signal.
Outliers with identified contamination are marked with
comments in Tables [V] and [VIl

Two of the outliers were induced by very loud simu-
lated hardware injections. The true parameters of these
signals are listed in Table [VII]

VII. MANUAL OUTLIER FOLLOWUP

To determine whether or not any of the outliers in Ta-
bles [V] and [V]] indicated a credible gravitational wave
detection, each outlier was subjected to manual inspec-
tion, after which several criteria were used to eliminate
those not likely due to the target astrophysical popula-
tion. First, we discarded any candidate with a segment
other than [0,6], [0,5], or [1,6]: as noted, this would elim-
inate less than 1.5% of true signals from our popula-
tion. Next, we disregard those signals marked as "non-
Gaussian”. This criterion has a more substantial false dis-
missal probability: roughly 20% of the search band was
so marked. Nonetheless, we would be unable to claim
with any confidence that a candidate from such a band
was not simply a non-Gaussian instrumental outlier. Fi-
nally, we disregard outliers in bands with visually obvious
spectral disturbances: this has a similar false dismissal
rate, but has substantial overlap with the non-Gaussian
bands.

This winnowing resulted in three surviving candidates:
Al14, A27, and A29. Of these, Al4 is the most interest-
ing (Figure , with a log;,(GFA) of —0.9. This suggests
that, conservatively, roughly 10% of searches of this type
would produce an outlier as loud as Al4 due to Gaus-
sian noise alone. While not enough to make a confident
claim of detection, this was certainly enough to motivate
further follow-up.

All three candidates were followed up with NO-
MAD [15, B3], a hierarchical pipeline used in previ-
ous continuous-wave searches [I5]. This adaptive pipeline
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Idx SNR log;,(GFA) Segment Frequency Spindown RAjzo00 DECj 2000 Description

Hz nHz/s  degrees degrees

1 1941 —188.8 [0,0] 108.83151 -3.090 323.755 37.114 Induced by loud hardware injection 3

3 32.1 —27.3 [0,1] 192.55507 -0.585 306.480  34.197 Induced by loud hardware injection 8

4 31.3 —36.8 [2,5] 69.73917 -2.885 313.580 16.478 Line in L1, Non Gaussian

6 14.7 -7.3 [2,5] 988.82017 0.215 307.682 33.630 Line in H1, Non Gaussian

7 11.4 —-2.9 [2,6] 648.74939 -5.000 299.622 33.315 Line in H1

8 10.8 —-1.2 [2,5] 1143.32783 -0.995 300.553  32.632 Strong disturbance in H1

9 10.2 1.4 [0,1] 481.96422 -0.105 301.872 34.275 Line in L1, disturbed background in H1 and L1
10 10.2 0.5 [2,4]  99.14832 -1.100 318.949 27.088 Disturbed background in L1
11 9.8 0.3 [1,4] 897.63729 -2.215 303.190  35.780 Non Gaussian
12 9.8 1.0 [2,4] 956.74358 -4.115 302.033  34.395 Disturbed background in H1, Non Gaussian
13 9.8 —-0.7 [1,6] 1138.50993 0.090 299.389 34.748 Disturbed background in H1+4L1, Non Gaussian
14 9.7 —-0.9 [0,6] 1404.89226 -1.205 303.637 36.819
15 9.6 —0.8 [0,6] 799.42915 -0.840 300.724 31.062 Line in H1, Non Gaussian
16 9.5 0.1 [1,5] 1368.77913 -3.560 304.484 30.949 Lines in H1
17 9.4 2.4 [1,2] 1308.96651 -1.670 304.436  30.232 Non Gaussian
18 94 0.8 [2,5] 1386.45871 -0.510 304.398  34.228 Line in H1 at 1386.5 Hz, Non Gaussian
21 9.2 2.6 [5,6] 1170.98217 -4.395 304.353 34.829 Non Gaussian
22 9.0 4.1 [2,2] 1191.26642 -0.455 300.720 31.494
23 8.9 2.1 [0,2] 829.72137 -2.900 305.831 33.090
24 8.9 04 [0,6] 1321.56703 -1.820 304.707  32.001 Non Gaussian
25 8.9 2.9 [4,5] 1058.43325 -3.600 300.356 31.068
26 8.9 1.6 [1,4] 1302.65337 -2.250 299.854 34.786
27 8.8 0.9 [0,5] 1474.94224 -2.050 303.295 32.273
28 8.8 0.6 [0,6] 990.76130 -2.705 299.638 33.235 Disturbed background in H1
29 8.7 1.1 [1,6] 1429.67892 -2.010 303.739 32.845
30 8.6 0.9 [0,6] 1325.50969 -4.325 300.291 34.313 Disturbed background in L1, Non Gaussian
31 8.5 3.4 [5,6] 1177.15326 -0.040 307.054 32.374
32 8.4 1.5 [1,6] 1330.69434 -3.285 300.625 34.037 Disturbed background in H1, Non Gaussian
33 8.4 1.5 [0,5] 1456.26611 0.195 302.336 33.628 L1 SNR is inconsistent with background level
34 8.3 2.0 [2,6] 995.14313 -1.400 302.428 31.768 Disturbed background in L1
35 8.1 1.8 [0,6] 1286.17215 -1.185 305.624 35.126 Line in H1, Non Gaussian
36 8.0 2.8 [2,5] 1386.02201 0.050 304.242 36.465 Line in H1 at 1385.9 Hz, Non Gaussian
37 7.8 4.2 [1,2] 1359.72387 -1.745 298.903  32.885 Instrumental contamination in L1

TABLE V. Outliers that passed the full detection pipeline from region A. Only the highest-SNR outlier is shown for each 0.1 Hz
frequency region. Outliers marked with “line” had strong narrowband disturbance identified near outlier location. Outliers
marked as “non Gaussian” were identified as having non Gaussian statistic in their power sums, often due to very steeply

sloping spectrum.

searched a span of 255 days of S6 data in 5 successive
stages of refinement: with coherent segment lengths of
2.5 days, 5 days, 7.5 days, 10 days, 12.5 days, and 255
days (fully coherent). The recovered power from each
candidate remained roughly constant at each stage, and
consistent with noise, rather than increasing with coher-
ence length. This strongly indicates that these outliers
do not follow the presumed signal model over timescales
of several days.

As a consistency check we have also studied the outliers
with long coherence codes based on F-statistic [8] B0l
311, B3] as well as codes with shorter coherence lengths
[32]. The search [34] with coherence time of 27 days
established upper limits at the outlier locations ruling
out any significant signals.

VIII. CONCLUSIONS

We have performed the first deep search along the
Orion spur for continuous gravitational waves in the
range 50-1500 Hz, achieving a factor of 2 improvement
over results from all-sky searches. Exploring a large spin-
down range, we placed upper limits on both expected
and unexpected sources. At the highest frequencies we
are sensitive to neutron stars with an equatorial elliptic-
ity as small as 5 x 1077 and as far away as 1000 pc for
favorable spin orientations.

A detection pipeline based on a loosely coherent al-
gorithm was applied to outliers from our search. Three
outliers (A14, A27, and A29 on Table were found
with continuous presence and no obvious instrumental
contamination. However, deeper follow-up did not reveal
a source consistent with the original signal model. This,
combined with the only modest improbability of the loud-
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Idx SNR log;,(GFA) Segment Frequency Spindown RAj2o00 DECj 2000 Description

Hz nHz/s  degrees degrees
1 413 —55.9 [1,4] 243.27113 -3.675 134.486 —35.443 Line in H1
3 198 —20.9 [0,6] 69.74870 -4.130 111.634 —36.471 Line in L1, Non Gaussian
4 153 —6.8 [1,3] 268.96658 -5.065 135.288 —46.431 Line in H1
5 11.7 —2.5 [2,5] 170.84304 -2.725 124.589 —48.321 HI1 SNR is larger than coherent sum
6 11.3 0.2 [2,3] 108.07698 -0.115 122.585 —48.207 Disturbed background in H1
7 109 -2.0 [1,5] 158.39427 -3.550 122.974 —49.793 Line in H1
8 10.8 2.5 [0,0] 1111.39559 -0.345 131.270 —44.537
9 108 2.5 [3,3] 956.81519 -0.905 129.372 —44.282 Disturbed background in H1
10  10.6 2.7 [3,3] 950.80278 -1.900 128.821 —45.115 Disturbed background in H1
11 105 2.8 [0,0] 611.12967 0.255 130.848 —49.230 Non Gaussian
12 10.0 —0.6 [2,6] 1076.04377 -3.250 133.282 —47.130 Line in L1 at 1076 Hz, Non Gaussian
13 9.9 3.3 [3,3] 1118.06896 -2.645 128.952 —47.992 Disturbed background in L1
14 9.6 0.0 [2,6] 1498.30429 -2.000 131.393 —48.022 Disturbed background in L1
15 9.6 —0.7 [0,6] 613.26132 -3.950 125.353 —42.144 Non Gaussian
16 9.3 0.4 [2,6] 1498.73031 -0.195 125.668 —42.539 Non Gaussian
17 9.3 0.0 [0,5] 933.33823 0.100 127.556 —48.783 Non Gaussian
18 9.1 1.3 [0,3] 1313.24312 -5.000 127.562 —47.859 Disturbed background in H1
19 8.9 1.6 [0, 3] 1458.79267 -2.425 125.394 —43.661
20 8.9 0.8 [1,6] 1249.43835 -1.550 128.846 —46.928 Disturbed background in H1+L1, Non Gaussian
21 8.7 1.1 [1,6] 880.40175 -2.865 130.890 —47.472 Disturbed background in H1, Non Gaussian
22 8.6 2.5 [2,4] 1254.11705 -1.295 128.862 —41.615 Line in L1, Non Gaussian
23 8.6 1.3 [1,6] 1333.27906 -1.650 128.265 —47.879 Non Gaussian
24 8.6 3.3 [1,2] 1497.14217 -2.210 129.202 —46.366 Line in H1, Non Gaussian
25 8.6 3.3 [2,3] 1333.83095 -4.445 124.636 —46.522 Non Gaussian
26 8.4 1.8 [0,4] 1336.24255 -0.005 126.374 —42.633 Non Gaussian
27 8.3 4.7 [1,1] 1370.69201 -3.375 130.199 —41.568
28 8.3 2.1 [1,5] 1316.98962 -1.025 130.853 —47.324 Non Gaussian
29 8.2 4.9 [2,2] 795.42245 -3.855 131.083 —47.536
30 8.2 1.6 [0, 6] 1458.53648 -3.800 131.684 —43.218 Line in H1
31 8.1 2.0 [0,5] 1119.11347 -3.975 125.384 —43.551 Disturbed background in L1
32 7.9 3.0 [2,5] 1331.56844 -4.210 128.647 —46.135 Disturbed background in H1
33 7.6 3.8 [3,5] 1334.83602 -4.700 129.188 —41.911

TABLE VI. Outliers that passed the full detection pipeline from region B. Only the highest-SNR, outlier is shown for each 0.1 Hz
frequency region. Outliers marked with “line” had strong narrowband disturbance identified near outlier location. Outliers
marked as “non Gaussian” were identified as having non Gaussian statistic in their power sums, often due to very steeply
sloping spectrum.

Name Frequency  Spindown  RAj2000 DECj2000

Hz Hz/s degrees degrees
ip3  108.85716 —1.46 x 1017 178.37 —33.44
ip8  193.48479 —8.65 x 107%°  351.39  —33.42

TABLE VII. Parameters of hardware-injected simulated signals detected by PowerFlux (epoch GPS 846885755).

est outlier occuring in Gaussian noise, leads us to con-
clude that statistical fluctuations are the likely explana-
tion for these outliers.
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FIG. 4. SNR skymap for outlier A 14. The disk (0.025 rad
radius) is centered on the location of the signal. Each pixel
(0.555 mrad) on the skymap shows the SNR maximized over
a 5 x 5 template sub-grid and all polarizations. The high
frequency of the signal (1404 Hz) allows good localization
(color online)
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