147 research outputs found

    Response Of The Laminar Layer On A Flat Plate To Free Stream Disturbances

    Get PDF

    Reconstruction of Femur Length Using the Epiphysial and Diaphysial Diameters in Contemporary Egyptian Sample, with Application to Ancient Egyptians

    Get PDF
    Inferences in bioarchaeology and forensic contexts require mathematical stature estimation using long bone lengths. This study is in hand to identify predictors of femur length (FL) from epiphyseal and diaphysial width measurements that are not bound to assumptions of sex or laterality. Both standard and new measurements around dominant foramen nutricium (NF) were collected on modern femora (n=64) from Alexandria university unidentified skeletal Collection to compute linear regression models. Four equations were then validated on Ancient Egyptian sample (n=73) from Goldman’s Osteometric dataset to evaluate effect of sex subdivision on the prediction accuracy of FL and indirect stature estimation using Raxter’s formulae. Most of models reflected significant positive association r\u3e0.60) between width variables and FL. Oddly, the distance from proximal end to NF correlated weakly with FL (r=0.34). The stepwise selected equations preferred measurements around NF to midshaft where the anteroposterior diameter was included in proximal fragment model (r=0.77) and circumference in diaphyseal fragment model (r=0.62). Tested equations performed consistently on the ancient Egyptian sample. Measurements from femoral proximal fragment are more reliable predictors than distal fragment with the exception of femur neck diameter. However, distal epicondylar breadth is a better predictor of FL in females than in males. Indirect stature estimation showed a reasonable degree of accuracy in both sexes. These models can be applied successfully in Contemporary and Ancient Egyptians fragmentary remains however, due to larger size of femora from Old Kingdom sample, they would be most applicable to individuals from the following dynasties

    β-Thalassemia: Genotypes and Phenotypes

    Get PDF
    β-Thalassemias are extremely heterogeneous at the molecular level. More than 200 disease-causing mutations have been identified. The majority of mutations are single nucleotide substitutions. Rarely, β-thalassemia results from gross gene deletion. The degree of globin chain imbalance is determined by the nature of the mutation of the β-gene. β0 refers to the complete absence of production of β-globin on the affected allele. β+ refers to alleles with some residual production of β-globin (around 10%). In β++, the reduction in β-globin production is very mild. The broad spectrum of β-thalassemia alleles can produce a wide spectrum of different β-thalassemia phenotypes. In this chapter, we review the molecular basis of the marked heterogeneity of the thalassemia syndromes or in other words the genotype-phenotype relationship in β-thalassemia

    Target Therapy in Neuroblastoma

    Get PDF
    Neuroblastoma is an embryonal malignancy that originates in the sympathetic nervous system. It is the most common solid tumor in infants and the most frequent extracranial solid tumor in children. Neuroblastoma accounts for 10% of childhood malignancies with 75% occurring in children <4 years. Stage, age, clinical and tumor genomic features are the principal criteria for determining treatment policy. Treatment modalities traditionally employed in the management of neuroblastoma are surgery, chemotherapy, and radiotherapy. Intensive multimodal treatment in patients with neuroblastoma has resulted in improved survival rates. However, there is a considerable percentage of patients with refractory and relapsed disease. Targeted therapy for neuroblastoma involves treatment aimed at molecular targets that have a unique expression in this childhood cancer. A large number of molecular targets have been identified for the treatment of high-risk and relapsed neuroblastoma. Treatment in this way aims at providing a more selective way to treat the disease and decreasing toxicities associated with the conventional treatment regimen

    In vitro evaluation of electroporated gold nanoparticles and extremely-low frequency electromagnetic field anticancer activity against Hep-2 laryngeal cancer cells

    Get PDF
    Introduction. The extremely-low frequency electromagnetic field (ELFEMF) has been proposed for use in cancer therapy since it was found that magnetic waves interfere with many biological processes. Gold nanoparticles (Au-NPs) have been widely used for drug delivery during cancer in vitro studies due to their low cytotoxity and high biocompatibility. The electroporation of cancer cells in a presence of Au-NPs (EP Au-NPs) can induce cell apoptosis, alterations of cell cycle profile and morphological changes. The impact of ELFEMF and EP Au-NPs on morphology, cell cycle and activation of apoptosis-associated genes on Hep-2 laryngeal cancer cell line has not been studied yet. Materials and methods. ELFEMF on Hep-2 cells were carried out using four different conditions: 25/50 mT at 15/30 min, while Au-NPs were used as direct contact (DC) or with electroporation (EP, 10 pulses at 200V, equal time intervals of 4 sec). MTT assay was used to check the toxicity of DC Au-NPs. Expression of CASP3, P53, BAX and BCL2 genes was quantified using qPCR. Cell cycle was analyzed by flow cytometry. Hematoxylin and eosin (HE) staining was used to observe cell morphology. Results. Calculated IC50 of DC Au-NPs 24.36 μM (4.79 μg/ml) and such concentration was used for further DC and EP AuNPs experiments. The up-regulation of pro-apoptotic genes (CASP3, P53, BAX) and decreased expression of BCL2, respectively, was observed for all analyzed conditions with the highest differences for EP AuNPs and ELFEMF 50 mT/30 min in comparison to control cells. The highest content of cells arrested in G2/M phase was observed in ELFEMF-treated cells for 30 min both at 25 or 50 mT, while the cells treated with EP AuNPs or ELFEMF 50 mT/15 min showed highest ratios of apoptotic cells. HE staining of electroporated cells and cells exposed to ELFEMF’s low and higher frequencies for different times showed nuclear pleomorphic cells. Numerous apoptotic bodies were observed in the irregular cell membrane of neoplastic and necrotic cells with mixed euchromatin and heterochromatin. Conclusions. Our observations indicate that treatment of Hep-2 laryngeal cancer cells with ELFEMF for 30 min at 25–50 mT and EP Au-NPs can cause cell damage inducing apoptosis and cell cycle arrest

    Children with Chronic Renal Failure on Hemodialysis

    Get PDF
    Abstract Background and Aim: Growth retardation is still an important manifestation of children with chronic renal failure (CRF). The aim of this study is to evaluate the growth in relation to nutritional status in Egyptian children with CRF on hemodialysis

    Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt

    Get PDF
    Background and Aim: Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods: Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results: Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018–2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018–2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion: The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Dissolution Enhancement and Formulation of Rapid-Release Lornoxicam Mini-Tablets

    Get PDF
    The aim was to enhance the dissolution of lornoxicam (LOR) and to produce mini-tablets with an optimised system to provide a rapid-release multi-particulate formulation. LOR systems were prepared through co-evaporation with either polyethylene glycol 6000 or Pluronic® F-68 (PLU) and adsorption onto Neusilin® US2 alone or co-adsorption in the presence of different amounts of polysorbate 80. All systems were characterised by FT-IR, differential scanning calorimetry, X-ray diffraction, flowability and dissolution techniques. Mini-tablets were prepared using the system with the optimum dissolution profile and flowability. Tensile strengths, content uniformity and dissolution profiles of the mini-tablets were evaluated. The effects of different excipients and storage conditions on mini-tablet properties were also studied. The optimised rapid-release LOR mini-tablets were further evaluated for their in vivo pharmacokinetic profile. The co-evaporate of LOR with PLU showed significantly faster dissolution and superior flowability and was evaluated together with three directly compressible excipients (Cellactose® 80, StarLac® (STA) and Emcompress®) for mini-tablet formulation. The formulation with STA provided the optimum results in terms of tensile strength content uniformity and rapid drug release following a 3-month stability study and was selected for further in vivo evaluation. The pharmacokinetic profile indicated the potential of the mini-tablets achieving rapid release and increased absorption of LO

    Dynamics of Anti-S IgG Antibodies Titers after the Second Dose of COVID-19 Vaccines in the Manual and Craft Worker Population of Qatar

    Get PDF
    There is limited seroepidemiological evidence on the magnitude and long-term durability of antibody titers of mRNA and non-mRNA vaccines in the Qatari population. This study was conducted to generate evidence on long-term anti-S IgG antibody titers and their dynamics in individuals who have completed a primary COVID-19 vaccination schedule. A total of 300 male participants who received any of the following vaccines BNT162b2/Comirnaty, mRNA-1273, ChAdOx1-S/Covishield, COVID-19 Vaccine Janssen/Johnson, or BBIBP-CorV or Covaxin were enrolled in our study. All sera samples were tested by chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of IgG antibodies to SARS-CoV-2, receptor-binding domain (RBD) of the S1 subunit of the spike protein of SARS-CoV-2. Antibodies against SARS-CoV-2 nucleocapsid (SARS-CoV-2 N-protein IgG) were also determined. Kaplan–Meier survival curves were used to compare the time from the last dose of the primary vaccination schedule to the time by which anti-S IgG antibody titers fell into the lowest quartile (range of values collected) for the mRNA and non-mRNA vaccines. Participants vaccinated with mRNA vaccines had higher median anti-S IgG antibody titers. Participants vaccinated with the mRNA-1273 vaccine had the highest median anti-S-antibody level of 13,720.9 AU/mL (IQR 6426.5 to 30,185.6 AU/mL) followed by BNT162b2 (median, 7570.9 AU/mL; IQR, 3757.9 to 16,577.4 AU/mL); while the median anti-S antibody titer for non-mRNA vaccinated participants was 3759.7 AU/mL (IQR, 2059.7–5693.5 AU/mL). The median time to reach the lowest quartile was 3.53 months (IQR, 2.2–4.5 months) and 7.63 months (IQR, 6.3–8.4 months) for the non-mRNA vaccine recipients and Pfizer vaccine recipients, respectively. However, more than 50% of the Moderna vaccine recipients did not reach the lowest quartile by the end of the follow-up period. This evidence on anti-S IgG antibody titers should be considered for informing decisions on the durability of the neutralizing activity and thus protection against infection after the full course of primary vaccination in individuals receiving different type (mRNA verus non-mRNA) vaccines and those with natural infection.The World Health Organization (WHO) - grant number [2021/1183356-0]
    • …
    corecore