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‘-l.ated by a modified Rankine vortex which was superimposed on the = ' - o

. the ‘physical sitgation of the problem.

3¢ N l
%
.’ o T o o -
~' ., ABSTRACT . L
. - ) )
- “ N ' ' ] .

The effect of free stream tiurbulence and other unsteady - . ?
rotational flows on the laminar bougdary. layer growi'né on a flat N
o . o o ’ ’ i ¢ »
plate were studied. . . . - J

The response of the lam:l.nar boundazy layer over a flat
plate to’a s:Lngle two-dlmensn.onal rotat:.onal dlsturba.nce was flrst o

investigated. In this problem-t.he rotational ‘d;sturbance ‘was simu-

.\

M . -
s . .ty

oncoming uniform stream. - ’

-

A variational-finite element method for solving the .-

Lgoverniruj equations of viscous fluid motjon was introduced and - o ' .

. : - N . )
used to obtain the variation of the velocity field with time’
the vortex approached the flew domain, inpinged on the: p‘late

-

en the dlsturbance generated convected downstream allow:.ng ‘ v

field to regain the onga.nal steady state. The result:mg

- F

time vakiations of the pressure, viscous shear forces, 1:|;nf?;~ a;;xd,
. , \ .o . :5;
drag forces and pitching moments were shown to be consistent:iwitk

. fa oo
L4 . a b

v e

e effect of free stream pse&d?—turbulence on the wis-
R ) “
cous laminar layer 'growxng on a flat plate was alsq 1nvest:|.gated. . -
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.. .~ The approach was to use a féiatjvqu hew computer simylation N

. ’ - ~

technique to generate pseudo-turbulence which provided the outer
boundary conditions fa} the flow over the flat plate; In this
‘turbulence model, real vortices, randomly distributed representing . .

o the turbulent eddy were convected along in the uniform stream

‘.

similarly as in Taylot's "“frozen patte&n" model of turbulence. , - '

1

The variational approach was used to solve the governing equations

- ' of motion near the plate. The time variations of velocity and .«

N - >
¥ M st et B R s i i RO

vorticity at different points in the flow field, together Qith'the

SR

variation of the lift and drag coefficients Qith time were pre-

’

‘sented. o C .

. T ‘The finite element approach was shown to be extrenély ,

- ) stable and. the results obtained when compared witﬁ the available - Lo

~ »

' data were-shown to be very.satisfactory.’
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' CHAPTER (1)

. ’ . L‘ . "
g - INTRODUCTION

/\
1.1 Geéneral Introduction

. 1
.

o ! .
- Investigatirig the influence of free stream turbulence and ,

other unsteady rptationaluélows.on the laminar boundary layer grow-

‘ing on a hody surface is an interesting and important problem.

-

Y

.

o [

It~is=mathematicélly interesting because of the nonlinear

2

character of the goverﬁing equg;ions of viscous fluid ' motion. fhis

nonlinearity creates several difficuylties, not only to obtain an

analyticai solution, but also to solve the eqﬁations numerically,

Exact solutions of these equations, even without the complexities

2 ©

. t . :
5 of unsteady disturbances in the free Stream, exists only in a few

elementary gases as, for example, the fully developed laminar flow
. &

in. a pipe or a channel, Hiemenz stagnation flow and Couette flow.

“a

7
y -

. The. importance of the present study arises from the fact

v

that most of the flows 6ccuting in nature. are turbylent. 'On the

3

. . ) .
v other hand most of the boundary layer studies carried out previously

considered the £16w,approaching the body to be idealised as steady
unifcrm flow, accelerating flows, ‘linear shear flows and in some
- cases the body or the main stream waé assumed to be fluctuating in

v
2

I R
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o @ certain predeteriﬁineg regular form.

- ’ .
.

. . <yfﬁl . . )
N S . ¢ N Y
{- -  The successful studies of simulating turbulence carried

5, .

out recently by other auti#rs as, for example, the work by Lilly (L,

' Base (2) and Ahmadi and Goldschmidt (3), enhanced the possibility
of investigating the effect of free stream tqrbuience on the vis-

£ Y

cous boundary layers by using a mathematical model to represent the |

s

. h ) . )
approaching flow. In the preseht work a single vortex and a turbu- .
Co ~ .
' ¢ Ao .
lence model were used to simulate the outer flow conditions while

the Navier-Stokes eqﬁai;ions were solved near the solid body to

v -

predict the variation ofWiel‘d in the viscous layer

with tine, N : .

!

This study may be of special interest in the fie(é of
N . - -
eaerodynamics and heat 'tran;/?er. For example, it can be efended

to in;/estigate the response of aeroplane wing to the trailing

vortices in tife wake of another aircraft. In the field of heat
transfer the variation of the velocity field in the viscous layer,
éue to free ,strea_.{a turbuylerrce, may h+e an gffect on the rat;qf
heat trahsfer from’a; heated surface. .
N FE ' A
1.2 The Governing Equations ' H/ ‘ ~

The governing équations of motion of an i'ncompressible
. 473 .
fluid (Navier-Stokes equations) can be written as:
. ’ )
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. function y such that,

1 2 '
—_— . = - - ‘4 v . -
(at u.vju 5 Vp\ v U o (1-1)
where ' U is the velocity véctor,

p 1is the pressure,

t 1is the time, o
' B
and v ' is the kinematic viscosity of the fluid which is assumed

to be constant. . .

The continuity equation can be written as:

a

vV.u=0 . (1-2)
£

In the case of two-dimensional flow in the (x,y) plane,

the equation of contimjity can be satisfied by introducing the stream
) ) “

> u;’—a-‘k v=-0 i {1-3)

where u and v are the velocity components in the x.and y directions
{ - '
respectively. i :

1
.
o

Eliminating the pressure term from equaticn (1-1) (see

Appendix. (A)) and introdficing the vorticity vector ¢ such that,

»

Q

i

v EEVxU . o (1-a)

the resulting equations can be written in two-dimensional form as:

-
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where soeg = V3, (1-6)
2 2 *
V2 = 2——-+ a_ ,
. 9x2 dy2 -
S~
T -
and T (Es written as the component ;3 in the vorticity vector i.

3

Equation (i—é) is called Helmholtz vorticity transport equation
{two-dimensional form) and equation (1-6) is called the stream

function equation.

-~

o

A relationship between the pressure field and velocity

field can be obtained from equation (1-1) (see Appendix (A)) and °

can he written in the two-dimensional form as;

VZp = -pQ . (1-7)
where ’ - Q: 2(-6—1-1—-81—3_2.3—\!-)

9y 9x 9x 3y
Equation (1-7) can be.used to obtain the pressure distri-
bution from the known velocity “distribution if the boundary condi-

tions of the pressure are known.

1.3 Review of the Previous Work

~

»

In the past not many investigations have been made in the '

{



study of tHe response of. the laminar boundary layers to free stream
turbulence by solving the time-dependent governing equations. To

the author's knowledge the first investigation in this subject was

N

o F e

carried out by Lighthill (4) who studied the response of laminar

skin friction and heat transfer to harmonic fluctuations in the

i
g
b
iy

main stream velocity. The problem considered was to analyze mathe-
; maticafly the laminar boundary layer in two-dimensional fléw about

a cylindrical body when the velocity of the oncoming flow was °

fluctuating. The time-dependent boundary layer equations were
solved and it was found that the maxima of the skin friction anti-

cipated the maxima of the free stream velocity because the existiné

.

pressure gradient accelerated the slow flow near the wall sooner

> a3
oy

- -

. than the main stream itsélf. However the heat transfer fluctuations’
&ere found to lag behind their quasi-steady value, andAalso decreased
in amplitude as the frequenc9 increased. The case studied by Light-
hill was limited‘to fluctuations of small magnitude rélative to the
main stream. Moreovéry these flucﬁuétions were restricted to be’

harmonic in magnitude and gestant in direction.

S
-
.

Glauert (5) considered the problem of the two-dimensional

*

laminar boundary ‘layer on an infinite-flat plate normal to an ap-

* 3

- proaching stream for the case when the plate was making transverse
~ oscillations in its own plane. The boundary laygr equations were

reduced to a single ordinary differential equation, containing the

frequency as a parameter. The equation was solved and the solution




e g

[ S —

was found to satisfy the full Navier-jStokes e;;uati;né. In the same:

work a_study on the effect of oscillations on heat transfer from

the plate showed that thete was no effect at all on the temperature ¢
o

distribution and the rate of heat transfer. The oscillqtiéns of the

[

flat plate in Glauerts' work was limited to be harmonic.

.

Ting (6) studied the problem of the boundary layer over a
flat plate in the presence of shear flow., A siﬁilérit; solution
was obtained for laré approaching vorticity yhile for moderate
free stream vortici the ,governing equation was replaced by an

approiimate one for which a similarity solution existed. The problem

.

of shear flow past a flat plate was also studied by Mark (7), while

an investigation for the pressure gradient induced by shear flowo

Y

past a flat plate was reported by Glauert (8).

The effect of free stream turbulence on laminar skin
friction and heat transfer was studied experimentally By Smith and

Kuethe (9). Measurements were made on a flat plate and on circular
. s [=]

cylinders. located at various distances downstream of a turbulence
generating grid placed normal to the flow in a wind tunnel. The

results showed that the laminar heat transfer and skin friction on
, . .

y - - \
a flat plate at Reynolds number of 105 were, increased by about 30%
when the turbulence level at the leading edge was 6%. In the work

by Smith and Kuethe the time variations of the skin friction and

\

.

o ' . . b
heat transfer were not investigated. Moreover, no analytical or

oY
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numerical treatments of the timé—aependent éovernihg equations were

reportéd.

o

e
N . 0 > L

- . -
M

K}
- -

A study on the effect of turbulence intensity on the drag
coefficient of an infinite cylinder in cross flow was presented in

’the work by'Kestin (lO).{’It was found that there was a critical -

range of Reynolds number for which the dreg coefficient dépended

’
]

sfrongly on the turbulence fqtﬁpsity as well as on the Ré&nolds

2

number. Outside this range the effect of turbulence intenéity on

the drag coefficient was found to be negligible.

. ]

N .

B

Q

Measurements of the response of the laminar boundary layer.

o

to free stream disturbances were carried out by Erens and Chasteau

(11) . These authors concentratéd on the fregquency analysis of the

o

Streamwise camponen€ of the laminar boundary layer velocity fluctu-
. i . -« . ) .
ations at various points along the length of a flat plate. No
measurements were reported for the variation of 1lift and drag due

2

to.the disturbed stream.

.

1.4 The Preéent Work

o ]

. In the work presented in the thesis a method was first

introduced and then applied to study the effect of free stream

~turbulence on the two-dimensicnal laminar boundary. layer growing -

over a flat plate. - v

] <

[ 2
<

oo

L0

Q

©
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. . . .
o o ) .

>3

o The® im’restigatidn st'arte.d by considéring’the plate to be e
located between' two parallel sides of a channei with the leading
) . _edge \a !&o‘rt dist;ance0 downstream Qf the entrance to the channel. e
In order %o devglop the compu‘ter brog:ams and method of so‘lution

c the,‘éffgct‘bf‘a simple rotational disturbance, in the free stream ' :
3

3

approaching ‘a flat plate, on the viscous layér over the plate was
e : )
"firgt studied. This di§t°urbance was simulated by a modified Rankine

v
<

. o , vortex which ‘was superimposed on the oncoming uniform stream. Al-
though this problem does not have as much physical significance as
o “ :
) ' the case of ah aerofoil in' a turbulent flow, it has important funda-
o - A -

mental aspects, which could be extended to the study of the response

)
©

o0t ,0f an aeroplane wing to discrete gusts or to the trailing vortices
- 3 I -
N generated in the wake of another aircraft. .
- o ‘\
: . 3 . e -
@ A numerical method, based on the use of the finite-

]

differenrce technigue, to solve the governir’xg?equations of viscous

< ° flow motign is introduced in Chapter (2). The method was stable -
° . hd

when applied to obtain the steady state solution when the oncoming

stream was uniform. However, it was not stable when applied to -the oot
. \ +

study of the effect of a rotational disturbance on,the laminar layer

over a flat plate. ’ . S
. -1 R -‘ i . . -

<

A finite element method of solution, based on the vari-

) ;
ational approach, was then introduced in Chapter (4) and applied

R

; . in Chapter (5) to solve the physical problem of ‘a single 'real’ : -

H
" , »

b
[ 4

4

-



’ !hate. In'theopsgudo—turbulence model, 'real' vortices, randomly

~ vortex approaching and impinging on a flat plate. A new technique
A® ‘ \'7 e . -
which will be calleg" the space~time delay technique™, was also

. ) . , ©
introduced and used to develop the time varying downstream boundary

“conditions. The finite element method, which was completely stable,
was tested by applying it to a Qroblem for which the analytical solu-

tion was -known. The results showed a good agreement between the

finite element and analytical solutions. Graphs were plotted. to
show the variation of the velocity field with time when the vortex -
¢ ' ; ) N .
was convected along by the incgompressible free stream, impinging on.
he - .

. ’ .
the plate and then\the disturbance generated moving dzénstream and .

allowing the flow field to return again: to its original steady

: . . )
Results have been compiled for the variation of the pressure

. »

and shear stress along the plate wigh time and also the variation

state. o

of lift, drag and pitching moment abéut the leading edge of the

plaﬁe. The method of solution and results are discussed fully in

.
v

sl

Chapter (5).

1 1

o

- ' In Chapter (6) the effect of free stream pseudo-turbulence . ¢

.

on the laminar layer gfowing on a flat plate, togethef with the
) . ‘ L

. 1 > 9 4 ‘ o ) N It
resulting time variations of pressure, viscous shear forges were
2

X ;1-0"3.5 s

2 : . ‘ .
studied. The approach was to use a relatively new computer simu—
A o . . -
© oG “a . ‘ - Ll

lhtion ;echnique to generate pseudo-turbulence, which provided the e

, 6ut§r!%andary conditions to a'finite element mesh set arQund the
- N V] i ES -~

o

gebre§enting the turbulent eddy, were convected .
. . -~

- [N s N o M

L)

’ [ 3
- distributed in space
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2.2 Review of the Finite-Qifference Methods in Solving VPscous Flow .
e ° i ) Y 2
\ A a,, ¢ ©
’ : Problems
o < . ) ’
R ° - - M ¢ . 2 k)
.G ° %)
! ~ . . 0“. ™ . . -
The rcxon-llnearl ty in the governing equations of viscous k6 | ) o,
N a 6 ¢ ' D, ' . ’

flow motion makeg them difficult to be solved not only analyticallya

~ v w
) -

’ . “
but also numerically. Although many trials have been made to numeri-
¢ 3 - °

cally sélve, these equations in different flow situations, a unique

&} o
. o N

o toe o R o
« Successful method that can be used in studying all kinds of flow
&) . ' : ¢ ’

“ oo _ problems has not yet been® found. To the auj:.hor's knowledge, the

A IR Lo ades g, v pver, -
Q

% = 2 . e . s i
e - first sudlcessful numerical solution of the complete equations of
1] ¢ o o

h o - El ™

Q
' <9 mol:i.on in two diniénsions\was obtained in 1928 by Thom (12) *for the o
D e® ° " ‘. < : 8 i ¢ o . ' o
E . . . o s fPow around a circular cylinder. at “a Reynolds number of 10. Later

¥] « 2 o Yow ° °

® ° 0in 133& Prancl‘t'_“l= (:103) used the’ step—by-vs'tep Umetl'1::~:i for gc;lving the
? ’ o . ,sp;ééyc, two-,dimensionalclgoundairf laye; flow equations. A re;riew of ,
? “ 013125 early w°ork -v'o(ﬂp to 1953) 0;1 Omm;eoarica.jl. solut'fions of the bounudary' | ‘A
’ 0 1ba¥’eruéqua‘l:.ions is’gi%'eun ?y Rosenhead (014) . In .zddi?:ion, recen£

4 :reviewsufo; th; use of naumérical me.thod.oso ‘in fluid dyn-amig,cs are 1gi_ven N

. o .
v o
o
I ¢ -

< by Blottmer (15) and Roache (16).
o o e

[

. e B ' . o ,
o > ) , “ - 5 »
o o ] : - o B
) v ] v v » >

. .7: During the last two decades an intensive investigation has

o

’ [} o i . I o
< " . . béen given to the numerical solution of the governing equations of
« viscous fluid motion, For example, Fromm and Harlow, (17) studied
numerigcally the problem of the'deyelopment of a vortéx street behind

PR3 " . " > o -
g ¢ . _a rectangular cylinder,cwhich was impulsively accelerated to constant
. > gpeed in a channel of .finite width. By transforming the two-dimensional

SR o

o
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%}

-

o " e

time-dependent Navier-stokes equation to vorticity-and stream s

function equations the preséure term was elimiqated. The finite-
difference analogue of the equations was -obtained by using a forward

o o ¢ 0

time-centered space finite-difference scheme. The complete details ,

< -

of the numerical technique used is given by Fr6qm (18) . This scheme
° oy
- ~ v “ °
was found to have a bounded instability at high values of Reynolds . ¢
number and which was® thought to be due to the - non-linearity of ‘the

équatiohs. A visual display technique for presentin% the results
H . ) o
was devised. This technique.was analogous to a flow visgsiijption

Y

2 (] . - . ] ©
experiment, in which a tracer is introduced into a fluid to make

the flow visible.” . s

o

o

AN

Donovan (19) investigated the unsteady incompressible flow

inside a two-dimensional square cavity. The fluid inside the cavity
. . . @ )

was initially at rest and then the upper surface of the cavity was

jerked into motion in its own plane with a constant velocity. An ,

.

alternative numerical technique for solving the two-dimensional

timé-dependent Navier-Stokes equations, together with the continuity

o

equation was then used. In this technique °the soclution of the

o

yelocity field (u,v) at the end of the future time increment was .

carried olit in two steps. The first step was to solve the Pois-

o -

son's edugtion for the current piessure‘distribution at the grid

points. The second step was to- calculate the values of the velocity
) ° ) . . ] “ . : &
components u and v at the new time level by solving the x and y

momentum eguations and considdring the pressure term to be known

[
o

4
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from the first step. A forward time-centered space finite-differ-

i,

ence scheme was used to obtain the difference analogue of the

J
momentum equations. The start of the flow motion in a square cavity

pal

at Rn = 100 was studied and the velocity profiles obtained at large
a o .
time were cempared with previoﬁs studies which were for steady state

conditions only, and a good agmeement was achieved.

] . o

The "square cavity problem" has been the subject of many
investigators. Mills (20) used an iterative scheme to solve the

steady vorticity and stream .functich equatiéns and Pan and Acrivos
(21) studied the steady flow in square cavities while Chein (22) ’ e
recently suggested a éeneral,finitgrdiffgrence formulation for J

solving the Navier=Stokes equations and applied the method to study

o

the time-dependent S%Bdre cavity problem. o ‘ 'Y

Thoman and Szewczyk (23) studied the time~dependent.vis-—

cous flow ober a circular‘cylindér for a range of Reynolds numgér
from 1 to 3.x 105. A finite-difference mesh-wasoconstruéted such
gha% éylinderical cells @ere employed near the cylinder and variable
width rectangular.cells were used in the remainder of the flow region.
The authors gavé‘more emphasis to the features of flow development
when the flow was started impulsively from rest. The method was of

explicit type and included a directional differencT'scheme for th

non-linear terms which enhanced the stability of the solution at

high values of Reynolds number.

.e . . /

P




The problem.of calculating the initial flow past a cylin-

der in a viscous fluid was also investigated by Son and Hanratty

-

(24j who tried to solve numerically the time-dependent equations of
¥

motion in order to extend the range of available data on steady flow

o around a cyiinder to large values of Reynold's numbers. Dennis and N

Staniforth (25) later suggested a method in which £he cylinder was

mapped to a straight line by using a coq%ormal transformatipn.\ Thié

method could be used to solve the equations for higher values of ;?i »
Reynolds numbgr. Jain and Rao (26),investiqfted the numerical solu- »

tions of the equations with particular emphasis on the existence of

the limiting steady state of the Karman vortex street for different

Reynolds number. ‘

o

Wilkes and Churchill (27) developed a numerical technique ;
for predicting the transient and steady state natural convection of ’

a fluid contained in a long horizontal enclosure of rectangular

¢ .
.

cross~section with one vertical wail heated and the other cooled.

*The equations governing the ‘conservation .of mass, momentum-and

energy were transformed to the vorticity and energy transport equa-

’

tions together with the stream function equation. Aan implibif,
alternating direction, finite-difference technique was employed to

advance the fields of vorticity-and temperétuxe at the interior

¢

grid points across a time step At,»while centered difference repre-

sentations’were given to all space derivatives. The natural con-

:

e S S T
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vection in a rectangular enclosure was also investigated by Rubel
and Landis (28).
3 " £y
4

Phillips and Ackerberg (29) integrated numerically-fhe

uns teady boundary . layer equations for the condition when there was

1

regions of reverse flow. The problem considered vas the unsteady
. , flow over a semi-infinite flat plate which was parallel to the

oncoming free stream., The fluid velocity outside the boundary layer

-

was assumed to vary in magnitude but not in direction as a sinusoi-

4
\

~dal function of time. An asymptotic soMition was assumed to be
valid at the downstream end of the integration mesh. An implicit
finite-difference scheme of éecond order accuracy vas employed and
a variable mesh size acrégs the boundary layer was used. The
results wére compared with known numericai and a§ymptotic solutions

> ne

and a good agreement was found.

Cebci and Smith (30) suggested a numerical scheme for

solvingAthe steady laminar and turbulent boundary layer equations

/ for compressible and incompressible flows about two-dimensional and
axisymmetricPbodies. BAn implicit finite-difference method was used
/ .

to solve the linearized momentum and energy equations after replacing

the Reynolds stress (p u'v') in the momentum equation by an eddy

N Bt 1 ¢ - 2 E

viscosity term using Prandtl's mixing length theory. In the solu~ <T/F:j>

tion a non-uniform grid was used in the direction normal to the .

"

solid boundary, which permitted shorter space steps close to the’




'

e

wall and longer space steps away from it. The reason for using a
non-uniform grid was to incfease the accuracy of computations near

. o
the solid boundary where the change in velocity was highest. The

method was tested by being applied to cases for which analytical

solutions were known. Morxe applications of this method were later

reported by Cebeci, Smitﬁ?and Mosinskis (31). .

A Crank-Nicolson finite-difference scheme with a variable
grid was investigated by Blottner (32) and it was shown fhatJthe
scheme was more efficient_and more accurate for solving turbulent-
boundary layer equations than the previpus methods used. The
truncation error associated with the use of non-uniform grids in
finite-difference equations was studied by de Rivas (33) who sﬁpwed
that éTthough the finite-difference schemes that used uniform'érids
were the simpleét and most accurate, the use of a suitdble trans-
«formation function for stretching coordinates could be ugeful in

decreasing the truncation error with non-uniform grid schemes.

v o Coe

To decrease the truncation error associated with the

\finite4difference approximation Hirsh (34) recently applied a

higher order finite-difference scheme for solving fluid mechanics

problems. In this technique three. mesh poirts were necessary to

©
H

obtain fourth order !ccuracy for both first and second derivatives.

a

The difficulty;with this technigue was that at each ;ime step

tridiagonal matrix problems had to be g6lved to find the required

<




ffw”‘l

e T RN

b

A

’\wribatives At the mesh points. Moreov;; the bounda;y values fqr
these derivatives had to be known. The method was applied to
study Howarth's retar@ed boundary layer flo; and the time-~dependent
incompressible square cavity pfoblem. Comparison between results
obtained by using second and fourth order methods indicated that
the accuracy achieved by the fourth order computations were siéni-
ficantly better.

1
«

Dwyer and McCroskey (35) summarized the many'difficélties_
associated with the nﬂmeriégi ;oiution of the three and four-
dimensional boundary layer p}oblems'as 1) obtaining proper and
consistént initial and boundéry conditions for the equations;

2) aeveloping a stable and unique numerical scheme to soiye thes:
egquations and 3) calculating the flow up to thé separation line.
In(the‘same_work Dwyer and McCroskey developed an implicit finite-
difference scheme which was used to integrate the thfee-dimensional

time-dependent bounda{y lgyer equations. It was noted that it°was

best to use an implicit scheme when studying the case of a solid

"« R

body in a fluid flow because of the stabili%y problems that can

occur with explicif schemes particularly near the leading edge of

-

the body. The method was used. to study oscillating flows over

'

cylinders with both the wall and the inviscid flow oscillating

w

and also to study the case of time-dependent flow over a rotating
N

airfoil in forward flight. : .



©

o Other work on the solution of the two anduthfge—diyenéional
boundary layer equations by using the finite-differénce approxiiation
include studies by Singletoncand Nash (;6)77Cooper and Reshotko (37)
and Cebeci (38). |

2.3 Vorticity-Stream Function Equations

USing the equation of continuity (1-2), the governing
equations for & two-dimensional, incompressible flow (1-5) and (1-6)

can be written in the form o

3¢ , 3lur) *3(ve) '

-y 72 -
ot ax dy v Vg s ‘ C(2cl)
where . e g =V,
. . ’ i 2 ,
’ . 2 _ . 3 ‘ ) .
V-ax‘i’s;{ .
and ) u vl v, Ny . (2-2)

.
. .

Equation 42-1) is the two dimensional form of Helmholtz vbrticity

equation and the full derivation of this equation from the Navier- ,

Stokes equations is given in Appendix (A).

. 4

PR

2.4 The F?nite-Difference Formulation . , .

B . «© .
The numerical solution of these equations was based on
. “ €

using a forward time-centered space explicit finite-difference f;‘ .,

o




.« " of the domain at which the explicit schemé was unstable., A succes-

21

» ‘ o

scheme to integrate the vorticity transport equation, It was found a
however that in some parts of the flow field the explicit scheme : .
: - LY

was unstable. To éliminate this instability, the acguracy of the
= < . o ). u“
solution was improved by considering the solution obtained from the -0=

explicit scheme as a first approximatibn. An implicit scheme was

then introduced and used to obtain more_§ccu;ate-results in parts

“

v

Cn

sive over-relaxation iterative technique was empleyed to solve the .

[

,Stream function equétion. The explicit and implicit schemes are
' ‘ . o . . ) i
presented in this section and the full details of the solution .

3 - -

proceduré are given in section (2.9).°
- - .
. o .

N

2.4.1 The First Scheme (Fully Explicit)
\ R
Cw . :y \

[
u

In this scheme the method used by Fromm (18) tg‘write

the difference approximation of the non-linear convective terms

was employed. The individual terms of the vorticity equation (2;17

. a ‘ *

were replaced by the following finite-difference approximation:
\

K
ar L1 (k+1) k ;
[at]-- -

. ‘ - 2-3-
, TR Gy TRy o (2-3-a)
° k ) C W :
a(ug) ~ 1 ey o N
. S ]ij A [0 s = (WD) ] - (2-3-b)
x : (k) .

] . (2-3-¢)




Q )
P 22
’ (k) .
325k 1
= - + -3-
. » 3is5 ® oz Cuaery ~ P45t Ciopy) (2-3-a)
) (k)
32; k -1 . .
’ . s (L., . =20, + L. 2-3~
[3;7]13 (By) 2 (€13+1 Cl] Clj—l)u (2-3-e)
'Y where the superscript k denotes the time level,
- - Ax  is the space step in x direction, >
o, ) _ . by is the space step in y directfon,
[

At  is the time step,
. .

and the notations used to label the grid-points are given in
Figure (1).
.- 4
, -
. . . .
_- The different terms, on the right hand side of equations
. - - ]
(2-3) were calculated as follows: ' ' v.
B
" K | Wy T (b m ) : (2-4-a)
; ij¢h By ige1 T Vij : -
v, ' [
. .
< Viegy T ax Wiy T iy (2=4-b) .
’ u « (u, + u +u +u (2-4-¢c) .
¢ i+khj 4 i+13+% i+lj-% ij-% ij+%)
° 2 v - (v + v + v 4y } (2=-4-4d) «
5 . © il 4 7 Tivki+l i-%j+1 i+k3 i-%j ‘
* 1
Ci+%j =3 (Cij + Ci+lj) . ‘ (2-4-e)
~ L v (2-4-£)
N Ligen T2 Rig T Riger) -

Substituting from equations (2-3) in equation (2-1) the following

. " equation was obtained, . -




. o B ! ~
o a ’ 3 : (2 3
. \}‘ - RN ] n
o (k+1)} (k) @ ALY L
. J Cij = %5 - [(uc) +45 (uC)l_hj] ‘ s .
. At : (k) \)At .
N by L0 5 (vg)ij—iz\ @x) 2 [§1+13. .
k) ) | 4
\ ] ( vAt R .
&yt Ci;lj] Y a2 [C13+1 2ti5 * i
: (k)
Li51] , » 3 {2-5)
- * B R . .
the values of . <

Rpplying equation (2<5) 40 each of .the mesh points
. : - . O . N \
the vorticityrg at the (k+1r time level can be predicted, asstming "

‘that ‘the velécity field 15<cdmpletely.known at the k time 19&9;.

A [ N : ' .
- . = o
- . . 5

. N . .

2.4.2 The Second Scheme (Fulty-implicit) - -
‘ N N . Ny © %

o
)

- An implicitcfinite-difference scheme was employed in- ah

attempt to eéliminate theistability:pgqblems created at some parts

3 . of the .flow field when using the explicit scheme mentioned,pre-

' viousﬁ&
L]

1mp11c1t sgaénnéxfecause of phe stability problems that can occur
< .

with explicit scHemes when solving tﬁe flow field near the eading,%

edge of a. solld body: The following flnlte-dlfference.approx -

* mations ware used to replace the 1nd1v1dual terms of equatlon (2- 1)

.

T # when applled to a typical field p01nt (13):. .

C (k) .
- ) f . (2=6=a)

(k+1)
' Lig

3T L1
s = 5w Gy

&

It waa recommended by Dwyer and McCroskey (35) to use e

H
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2 5 Bolutwn of the Stream Fﬁneshon Equatwn \‘ "o

) i 3 °

R R . - C o, G A
2 Q S . 0 3

.o s . . o, . g . L o

¢«  ° Using central qifferenées the 'fim‘;‘te-diffefence\anal%gue

< ©

‘of"equa;ti?ani‘°(‘2-'2)’ can be writtenjﬁat a typical point <(ij) as:

- ) B » & 0 7 >

.. - 1. , [N . . 1 Q . .
Sl o i "o - IV R T + R -2y + SL) e
TR ERT Waes T ey Viony) T Z Wigen T iy T Vi) o

s v s s e . . . (2-9)

« - o { -
B ° w o e .

Equatlcm (2-9) de.flnes a B)fstem of dlfferen?:e equatxons ‘which can ©

3 ° b - °

Be solved by us1ng "a dlrect -Or 1tearat1Ve method % ’Ihe uaextrapo‘lated
p o -

L:Lebma.nn J.teratlve technlque (see reference (39)) for solvxng

s ° E - ° M <o R ¢
’ equatibn, (2—9)" can be wi'itten“ as:"® E ’ i e

L

-= o > N . o - o

.2 o R < T , o

(m+1). 2, (m+1) 2

+ -

e 1 (m) )
* a2 (w1+13 Vi1

. N Y
; R L;J’m':Fw‘ij+l

F)

(m*l)

\blj %, ). (2-}0)

‘\
whEre the superscrlpt m denotes the 1teratlon number. N Equatlon

o - s T o

(2 iO) can be wruften 1n the ?:onde,nsed foxm, . ot

8 5 ) ¥ Y
" o = . o 5

v S (1) (m , (m)

vt K . 9 = . + o o (2=
E " le ‘blj le . R ' ( l]:):

°
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clee T wa? (a2 3 (m) (mbl) e »
. A o . + +
wherea u"Ri' ZT(Ax) 2+(Ay) 7] [C _2-(Ax) (-‘lli+1j¢. y’i—‘lj ) .
. 0% o < a GH Jo‘ ° o o ) ’
) 1o e ) 1o pm |
: Tz Yige Y Vi Yij

L0

N o P . . .
c ° ' v
. ° o ° o © v °

o

Tﬁehcohvergence pfathe iteration précedure (2-11Y can be cheler—

@ @

‘ ated by using a relaxation factor w such that = .
. . . . A\_‘ . o W © u
o . ° (m+l) (m) :,(m) ) “
: s L =gt v R e © (2-12)
I oo i3 o, Tij ij 5w

<
< 0 o " u
3
©

The value of w"which resulted in.the minimum number offiterations
o ~ . ° . -

>

14
L B

in this solution was 1.7. The iterative method méntioned in -

’ e - * e ¢ ° . »
equatjon (2-12) is the so called, successive over-relaxation method.
o <o - *
‘e - .. - e = ¢
[s] 5 B o ¢ "

04 1
° )
. e <

2.6 Ihe Effect 0f*a Two- D1men51ona1 Rptat1ona1 Disturbance on the

Lam1nar Boundary Layer Over-a Flat Plate " .

o . . o .

@

.
<

. To 1llustrate the ‘method of solution proposed in sections

N

(2.4) ‘and (2.5) the problem of* the effect of a two-dimensional
‘ ° o\ .

rotativnal disturbance -and then of pseudo free stream turbulence

»
o
-

on ;heblaminar boundaiy layer on a flat plate is now considered.

N

In this example the plate was situated midway between two parallel

: . . ) o ,
;‘sides of a channel with the leading edge a short distance down-

stream of. the-entrance of the channel as shown in Figure (2).

5y
° a S
°

° ‘The inyestigation started by studying the response of

the-vélogigy f{gld to the rotational disturbance.- TQis disturbance

v

<
&

a
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°

°
e}

. ' - 0 .
was mathematically Simulated by a modified Rankine vortex which was

’Sdper}mposed 6n a free stream of uniform velocity. The vortex was

> R IS \
initially set away \from-.the plate such that its influence on the
. ‘ N
ance of the flow field was almost negligibfe.

o

flow.pattern. at the en

ected (without diffusion) “towards the entrance

@

the centerline of the channel. The single

¢ e The vortex was then- co

of the flow field

modified“Rankine vorfed was particulkarly chosen to simulate the

rotational disturb

2 . . . :
ecause’ it was the main element in a vortex
v -

model that was used t

o

s 3 3 [
imulate pseudo free stream turbulence later

in the thesis. . A full discussion of this model is given in Chapter

(6) L ’ B

.

.v’The main purpose o%is stud not to investigate the "
& . c o “ . ’ X “ K3
« flow patternw‘in'le ininediate neighbourfbod-of the leading and

trailing edges of the flat plate. ° 'I‘he,;difficlulty in conducti}lg such

kind of st-udy by using a mumerical technique arises from’ the* fact

”

that ‘discontinuity of+'the variables occurs at these points. To
<. . N o : ’
overcome this difficulty, foz the purpose of the numerical solution,
a AY
R each of thg leading@nd trziling edges was situated between two

o

. nodal points in the finite-difference mesh, as shown in Figure (2), -

and were not selected as mesh points The same technique for the

B . ¢

treathent,of the trailing edge was used by Plotkin and Flugge~lotz
s - -3 -

(40) %o extend Blasius solution for the case of a semi-infinite

e flat plate to that of a finite plate with the associated wake flow.

. o, 0




2

©

Further their solution also succeeded to approach the Goldstein

wake solution far downstream of the trailing edge. In the same °

o
-

paper it was sStated that the solution obtained was valid upstream

and downstream of the trailing edge, but not in its immediate

neighbourhood. .

2.7 Boundary Conditions for the Vorticity and Stream Function

[ .
a

In most of the numerical studies carried out previously

" to solve. steady and qnsteaqy vi;mus flow problems, especially

those of flow over a solid boéy, the boundary conaitions were made

to satisfy certairt assmnétions which were approximations to what

was happening in the reai bhy;ical problem as, for example, the

wofk by Fromm and Harlowiﬂl?), Cheng (41) ang Sm%th and Brebbia (42).
Most of the boundary conditié%s used in the pasé were

either Dirichlet‘conditions (specified function value) or the

Neumann conditiéﬁs (specified nofmal gradient). In the present

work the Dirighlet type boundary éonditipns ;ere used. The

boundary conditions that canlbe used in a numerical scheme to : » E

simuléte the real boundary conditioné depends on the physical

problem under consideration. The émphasi; in this work was to

study the proSlem of ‘a timéfdependent flow over a flat plate which

v

was assumed to be situated midway between two semi-infinite parallel

¢
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sides of a channel as shown in Figure (2%.' The determination of

the boundary conditions on the four sjides, of the flow field and on

the flat plate were as.fol}OWS:

G

a

2.7.] The Upstream Boundary °

9

More than one method have been found in the literature to

specify the upstream boundary when dealing with the problem of flow

over a solid body. In most of the work done previously the upstreéam

baundary conditions were complétely independent on the conditions

inside the flow field, for example, the work by Pao‘and_Daugherty

(43) and Kawaguti (44). In some other cases, for example, the work

by Thoman and Szewczyk (45), the upstream boundary conditions

I o -

depeﬁded on the .conditions inside the flow domain by assuming that

-

v = - % 0 at that boundary.
ax . ’ Y

& o~

}

In this study the upstreém boundary conditions were
assﬁmed to be completely specified and indeéendent of the condi-
t;onsoinside the flow field whether a steady or an unsteady flow
problems were being considered. This assumptiﬁn was based on the
work carried out by Kinney and Paclino (46) who studied the flow
near thé leading edge of a flat plate moJing through a‘stationary
inc;mpressible viscous fluid. In their wor;~1t was concluded that

the flow disturbance ahead of the plate due to the leading edge

b

el

.
“pa
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was quite noticeable and the non-uniformity of the flow upstream of
the leading edge extended to’'x = =50 (where x was made dimensionless

with the plate velocity U and the kinematig viscosity of the fluid

-

v). This factor was taken into consideration when'setting up the

> A—\
problem described in this chapter and a distance, between the lead—

ing edgé of the plate and the upstream side of the field, equi;alent

to x = =90 was considered.

-
The distribution of ) and ¢ on the upstream boundary were

v

calculated from the assumed u and v distributions at that boundary

by using the relations

Yy = IZ uly) dy (2-13)
_ 3v _ 3u -
and o r = 3% 3y (2-14)

where Yy was assumed to be zero at y = 0. In the study carred out

t ) R

in this chapter a vortex model (see section 2,8) was also used. to

generate the time~dependent upstream boundary conditions.

2.7.2 Thé’Boundany Conditions at the Two Sides of the Flow Field

»

The u and v velocity components will have zero value

oY’

along the upper and lower stationary boundaries. Since v = - vl 0

’

on the two boundaries, then the value of ¥ will be constant with X,

.

30
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The constant y values on the upper and lower sides of the field

were dewfrmined from the known upstream conditions.

To calculate the worticity on the two boundaries, the
i

Tgylor series expansion of the stream function § near a typical

point O (see Figure (2)) on the 'solid boundary was written as:

53
= 3y __\k 37y, -
v, wo + h(sy) + ‘T 5 3, (8y3)0 toeeeaans (2-15)
Writing %$‘= 0 for the fixed boundary and knowing that 3% ——2-— 0

on the two boundarieé, then by using ‘equation (2-15) the following

equation was obtained,

- -2 - .
L T T3 (wl ¢0) + 0(h) (2-16)

Since the descretization error in equation (2-16) depends on h, a
finer finite-difference mesh will result in small descretization

o
. e
error.,

2.7.3 The Boundary Conditions on the Flat Plate

On *the flat plate, no slip condition apply and therefore
¢ was constant along the length of the plate. To find this con-

stant § value the condition %% = 0 was applied at the leading

‘edge which was situated between two mesh points as shown in Fi§ure

(2),. The calculations of the vorticity r on the upper and lower

sides of the plate was obtained by using equation (2-16).

Na,




2.7.4 The Downstream Boundary Conditions

, rd

The convergence and stability of a numerical 5flution of
a time dependent viscous flow ﬁroblem depends strongly on the down-
stream boundary conditions. Roache (16) stated that from previous
experience when solvinélflow préblems numerically that catastrophib
instabilities may”be propagated upstream from the outflow boundary

.

and cause the solution to go numerically unstable. Many trials
were made previously to find reasonable boundary conditions to be. »
used for the downstream side of fluid flow problems. In the work
by Allen and Southwell (47), Michael (48) ‘and Son and Hanratty (24)
‘a potential fiowlsolution was used to simulate the downstream con-
ditions. Katsanis (49) used upiform flow with u = constant and
v = 0 at the upstream and downstream boundaries, whereas Friedman
(50), Lee and Fung (51) and Chéng (41) used the Poiseuille flow
solution at the outflow. A less restrictive tyée of downstream
conditions was used by-Paris and Whitaker (52) where v = 0 and
5L '
x

d

A survey of the boundary conditions used previously with fluid

= 0 were assumed at the outflow of a two-dimensional channel.

flow problems is well presented in the book by Roache (16). .

In the present work a new technique, which will be called
the 'space-time delay techndique', wag inmtroduced and used to

develop the danstream boundary conditions. This technique was

3
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‘similar expressions were used for the v and [ components. The

. convection velocity u, was assumed to be the mean value of the .

based on relating the velocities at the‘downstream side with the

~

velocities at an adjacent section Ax apart at a time delay At,

v

where Ax was a small distance and with the proviso that u >.0.

This idea was used before in studying the laminar boundary layer

flow bver an impulsively started flat plate by Hall (53). The

relationship between the velocity components at the two adjacent
- v .

[y

sections can be written as:

a Ax ;
ulx + Ax,y,t? = u(x,y, t uc) ."

'

v

velocities at the two grid points so that, K

v

, Ax -
uc—:u(x+-2—, y, t-4t) .

@ a

This technique was tested by applying it'to the analysis

of the flow in the entrance region of a channel and details are . -

given in section¢(2.9.5).\c g 1

2.8 Mathematical Model o'f a Two-Dimensional Rotational sturbanc'é' .

!

3

c
’

A mathematical model was used to simifate the two-dimen- "
Sional rotational disturbance and from which the free sgream con-
ditions (Y, T) can be developed at a given ti@e. For the purpose

o'f this study the two-dimensibnal rotational disturhance was simu~ v




lated by a single modified Rankine vortex superimposed on a uniform

stream. A number of vortices cpuld have been used, however one
N o

o a

vortexﬁonlyowas considered in\%his example to simplify the analysis
‘. . . -

of the results. The velocity field in this case can be written as:

% .

y-N,

T
: us=U, -~ - > (2-18)
2
+ -f -u t + -
r L(x 20" Ye ) (y no)
o
r x - &D - uct
v== (2-19)
. ‘ ) T r? % (x-£{ -u t)? + {y-n y 2
. C 0 C : 0
¢ . where Eo, n0 is the initial position of the Vortex certer, .
. .o is’ the viseous~ cbre radius, ‘o
I' is the vortex strength, . : ’ « e
and u, is the conpvection velocity.

<

In terms of the stream function andcvdrticity the condi- "

¢ - <

tions at the entrance to the flow field were calculated at a given

o 2 :
o

time t from the relations,

4

2 2 _ 2
‘ ‘ ) T ro+ (x-f-u t)" + (y-n©.
. ° 4 W=y - rr l°9€n( " : ) (2-20)
' ¢ .. rz + (x-{b—uct)2 + ng .
: ) 2r? o )
r = % - : < - s (2-21)
] 6 - [rc + (x‘ip-uct) + (y-n,) ]‘- .
] ‘ - ’ 4_: -

o

where | was considered to have a zero value at the lower side of:
" ;

LR oL SRV

the field (y =0). Equations (2-20) and (2-21) were then usedrtd’_"°
. ’ - . - PR

o H v u
o o Fl




generate thg variables Y, L which repfesents the rotational distur~ .
o

<

bance. . . .

, 2.9 Proceduré of Solution-

d N u . v

. ' To illustrate the proeedure:of gsolution and later:to be )
< . . ¢
used as an initial condition” in & more conpllcated uqstgady flow
- -
problem, the 51mple casé of a steady uniform flow, wltﬁ no voxtex -

present, approaching a flat plate as defined in section (2.6) was

= 0

considered.- . .
The solution started by(consideriné a fluid stream of .
unlform velocity (without any dlsturbances) approachlng the flow : cL

region. To obtain. the steady state squtlon for the velqc1ty

‘e

field, potentisl flow was assumed.initially to exist everyvwhere in

the flow domain and this was used as ‘the startlng condltlons in

«

studying. the time dependent flow approachlng steady state. At

this point in the solution a viscous fluid flow was assumed to

LIRS -,

exist and hence no-slip conditions were imposed on the solid
o ’ .
©

boundaries. The explicit finite—differenée $cheme given in .section

o .

(2. 4 1) was then used to calculate the dist¥ibution of the vorti-,

©

city T at the future ,time level. Due to the 1nstab111ty of the

-

solution which was, originated at the upstream side of the plate,
the implicit scheme was empioyéd at that part o% the field to .
- o .

©
g




A . - 3 . . -
improve the accyracy of the results. The steady state solution was
N e p3

then used_.as an initial condition in a subsequent example to study "’

2

L Y
‘thé -effect of a two-dimensional rotational disturbance on the

laminar boundary layer over .the flat plate.

[¢] l

2

-J ; . 2.9.1 Procedure of Computations When Using the Fxplicit Schemé

The ‘pfocedure of computations when usinggthe explicit
. ‘ ' -
finite-difference scheme, given in section (2.4.1), to advance the

solution of the stream function § and vorticity 7 throudh a time .

increment At was as follows:

3 ) 1. .The stream function Y and the vorticity 7 were assumed to be

known at time t (at the start of calculations t = 0).

2. Equation (2-5) was applied in order to predict the values of

{ at each of the mesh points at time t + At).

3. Knowing the boundary values of Y at (t + Lt) and the distribu-
tion of { at (t + At) from step (é) the relaxation method
presented in section (2.5) was then used to obtain the cor-

responding ¥ distribution at time (t + At).

2.9.2 Procedure of Computations When Using the Implicit Scheme

o

The procedure of computations when using the implicit
¢ . .
o .
finite-difference scheme given in section (2.4.2) was as follows:



N

B.

lylﬂThé stream function ¥ and vorticity { were assumed-to be knewn

. [ I3 - .
" step (5), the relaxation method given in section (2.3). was then

X A Al +
used-to solve for a better approximation for wk, .
. 7 )

. + +1 , e
- Comparing wk 1 andll;k } with the previous approximation and

@ ~
- 3
—

at the k time level (t = k.At). 0
N ® '
: | F k41 k+1
“Assume as a fi¥st approximation that ¥ " and I -~ were the’

k 3 , : ;
same as Y and Ck (where the superscript k denotes the time

“

level).
i

o -
5

1

Using the nearest ‘available appgpx1q§{10n for Y . and equatkton -

) . . . . +
(2-16) it whs possible to get an estimaté for‘ck 1 at the

4

solid boundaries.

*

> &

Equation (2-7) was applied to all péints inside the flow region . ¢

3

and the elements of the matriée§ (a) and {F} in eéuation (2-8)

were calculated, s .

'
¥ e PR - ©
v 5
[y a

The matr;x equation (2—5) whé'SOIVea to determine a better

. . - k+1 |, . : :
approximation for [ ingide the field. : :
o ‘ © . ® . o, ) I ./
+1. +1 o
Knowing the values of Uﬁﬂl on the boundaries and ck-% from |

~

I L L e
. . .
K
.

>

if the convergence has been achieved go to step (8), otherwise
. - ) ] . .

o 1

return to s%ep {3) and repeat. ° ' - F - -

o . \J

» ”

Stop.
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2.9.3 Procedure of Calculations to Obtain the;Steady‘Ve1ocity Field

° . o o Around.a Flat Plate in Unifarm Flow

Q . N Y

L)

° “The pchedUre of calculations to obtain the steady velo-
city field when the’ oncoming stream approaching the plate was
° v o o -
. S aniform was as follows: | .

°

<

. 1. Consider the potential flow solution

to exist eveérywhere in the .

«

o e -, flow field at the start of the calculations (t = k.At = 0). ‘

‘4 °

2. Keep the conditidns at the upstream boundary unchanged
(v=C =0, us= u) . V E S -

°

oo B 3. Calculate.the values of the.vostici%y ; at the solid boundaries

a

"by using eguation (2-16). ’

-~ =

ot -~
N v 5

- 4. Use the spade—time delay technique given in section, (2.4.4) to .

3 ~ fn - +1 . + o
generate the values ‘of wk ! and Ck ! at the downstream side of

the flow field, . ‘ | ' R

- . . : Lo r k+
5. . Determine -the. distribution of the vorticity C ! and stream

a
il

: o . 2 k+1 . . . .

. ’ function Y by using the explicit scheme procedure given in
{ o ' @ " " e ' ST

* section (2.9.1). o e, N 8

o t -
[

<. J .

' 6. °Apply .the implicit scheme procedure given in section (2.9.2)

oo

@ a
.

. R  @6‘;mprove‘the calculations at the upstream side of the plate.” ’

A . . k+ ‘ k4 L o

S . The values of l’and z 3 obtained from step (5) can‘'be used

o “ N . . ~ -~ o " «

. 3 . o i
. . .

r
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’ ! ~ ’ ‘7, z L .
Q ‘ N ¢ B K . ’ . . i ’ o o : o
as a first approximation for the implicit solution (ise. in v
o o * . step (3) Of section (2.9.2)). . . Cs
) 7. Compare the values of Y 1 and t;},( 1 with that of wk and Ck. ’ L
‘ ] If.the conve;genéé has been achieved };o to step (9), otherwise -
: o . go to step (8). ° 2
¥ T 8. Put k = k+1 and go to step (4). . L ‘ <
9, Stop, )
¢ ) r - . ’ F M v
~ 2.9.4 Procedure of-Calculations When Studying the Effect of the .
. P “ ! v a - N a
ﬁ - . Rotational Disturbance on the Laminar Layer Over the Plate :
%‘ ’ - 4"‘, - v , : » .
% . R " The étéps of the calculations carfiéd out when studying
Wl e the response of the laminar layer over a flat plate to a two-
:' . .dimensional rotational disturbance were . as follows:,
° cl . v ® T , * o
{ 1., The steady state éolution°obtafned from section (2:9.3) was
. considered as an initial ‘condition (t = 'k.At = 0).
8 "
. - o t ‘e ‘Q - ‘T a ) g N .
Y o™ . 2. Use the mathematical model given in section (2.8) to generate
. LT " the upstream ‘conditions o(§, L) at t = (k+1).A¢t.
) 3., Use the space-time deldy techniquae given in section (2.4.4) ‘to
‘ - . + k+l e a
" generate the values of wk 1 and T at, the downstream side of
: - . ” e . . .
the flow field. :
B . t B o )
] . " .
- Co . .
o ’ U ' / (.r ‘ ' p
[ 4 . ! »
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" boundary layer equatiens., The velo¢ity'pf5fi1és'pbtainéd from the . . ..

~S.ulu&.pply thé implicit scheme procedure given‘in section (2.9.2)

‘chapter was tested by applying it to the.problem of laminar flew

d .
< 5 z

. o ¢

oL, Lkl . + B o
4. Solve for the vorticity ck and stream function wk 1 by using

Fl 2

. the éxplicit scheme given in section (2.9,1).

o

to improve the calculations at the upstream side of the plate.
_ ke . k+l
The values oﬁ/?/;y and [ obtained from step (4) can be used

— 2 1 = .

as & first approximatiod (i.e. in step (3) of section (2.9.2))¢

° o

Yo

6. If t < t___, where t is the time.Limit, put t = t + At and
: ; max max ~

. k=k+ 1 and go to step (2), otherwise go to step (7).

°© ’ L
o . ?
2 o

7. Stop. . T

2.9.5 A Test Problem . ‘ A .

-
[ . - .-
D b -

The numerical technique previously presented in this

. ..

<

development in the entrance region of a;stiaighp channel &ith.flat .
parallel walls. ‘This problem was solved by Schlichting (54) who

used the method, of series expansion to solve the éﬁeadyllaminar
< .. ’

method described in this chapter togethgr wf;p those prédicted by .
Schlichting were plotted in "Figure.‘_(3).. The difference between <

e

the axial® velocity components obtained from the two solutions was T
- . s ’ . "" - e . . ‘ . .
found to be within 4%. _ ~ K L - C e -
. o9 , ‘ ) .
¢ . . ° ‘ K 5
. ] B ' P . "
’ ® ¢ ‘ . «
. . :
. ; . . . .
. » . L]
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¥ SRRl R ST R DR T



e e s L

it

DN

v
oA S SO

v

e

[

©

°

2.10° Discussion of the Method of Solution and Results

[-]

o

14

The finite-difference method ‘presented in this chapter o

. was first used to obtain the stéady velocity field for the case. of

<

the flow over a flat plate which'was situated between two parallel

7

sides of a straight channel, as described in sectiog (2.6), when

Y

the approaching stream was uniform. The stability of the solution

depended significantly on the space increment in the x and‘y

directions fAx, Ay), the time increment At and the Reynolds number -
Uc )
R (R = —— , where c was the length of the plate). 1In the solu-

' e e Y

tion, where Ax = Ay = 0,167, At = 0.053 and R, = 600 (Ax, ly and

At werd made dimensionless by using U, and c), it was found that

-

one or two iterations were sufficient for the convergence of the

implicit solution. The steady state velocity profiles, obtained

. from the present method, were plotted in Figure (4). -

o

. The results were tested by comparing the variation of

the skin frigtion drag coefficient ¢ _along the‘length of the plate,

£

which was 6btained fromvfhe présent solution, with that gbtained
';by Blasius (54) and Howarth (55). The Blasius solution was based
-on using the mean vqlpe of the velocity atﬂthe edge of the bdundary.

layerloQE; the'élat; as u_ . However in Howarths' solution the

variation of the velocity at the edge of the boundary layer with

the distance x,” where x was measured from the leading edge, was’ 4

o, v

assumed to . be a linear va;iation., Fighre (5) shows that -the devia-

-
* ¢

E
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2 tion between the skin friction coefficient obtained from the present
o méthod and that of Blasius and Howarths' so}jutions was considerable.

Moreover the’skin friction coefficient ¢_ acbtained from the present s

f

::/ method was almost constant a;ong'the length of the plate. It was

. » concluded that the severe variation of the yeIogity component u

%c ) with the normal distance y in the immediate neiéhbourhood of the *
E plate, particularly”neér the leading edge, tended té increase the

% truhcation error ir‘l the finite-difference scheme.

The next part of the investigation was to study the effect

'

" of the rotational disturbance on the laminar layer over the plate

v

as described in section- (2.6). At the start of the solution the

vortex was located at x = -5 (where x was measured from the leading

4

. ¢ edge of the plate) where its influence on the flow pattern at the

entrance to the field was negligible. The solution procedure given

- " in section (2.9.4) was then Epplied and the vortex was convected

with the stream towards the plate, ‘Approxiﬂ'tely at t = 5.4 the

convergence of the-solution was not achieved and the results were

. T e not accurate from this time henceforth.

5 L]

In the following chagters a finite element method of

solution, based on the,vaiiatibnal approach, is introduced by the

] .
author in an attempt to achieve a convergent and stable solution ”

-
»

for the flow problem introduced previously in the thesis whére a

rotational disturbanceAapproaches and impinges on a flat plate and

i

' ., affects ‘the viscous boundary layer over the piate.
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CHAPTER (3)

LITERATURE S'URVEY OF THE USE OF THE FINITE ELEMENT

METHOD IN SOLVING FLUID FLOW PROBLEMS

3.1 Introduction -

PR @

In the past two decades the finite-difference methods

have been used for obtaining numerical solutions to some complicated

~ fluid flow problems. These problems include potential flow solu-

tions, slow viscous flows and unsteedy compressible and. incompres-

sible fluid flows. In some cases the finite-difference methods

éroved to be inadeeuate, eebecially w;th.problems that had complex
o

geometry or those involving 'ill posed' boundary conditions. The

introduction of the finite element methods enabled solutlons to be

obtained to some of the problems in which the finite-difference
. H

" methods failed. The finite élement methods offers great flexibility

in the construction of the finite element mesh and this flexibility

can help in dealing with complex geometry problems. Moreover the

@

© .

size of the elements in the finite element mesh can be varied such

that small elements can be used in areas of rapid dependent varlah*e

vchange and large elements when varlatlons are less severe

L
A
. el

The main difference between the iwo methods is that the

finite-difference'approximation,is used to derive the difference

“e : b

43



Ld
equations from the governing differential equations directly where-
as in the finite element method the difference equations can be
derived by using the variational formulation of the governing equa-

tions. It has been found that the difference equations derived by

the two methods are identical when using a simple regular mesh

together with a linear interpolation function and a simple problem

- cod
illustrating this.comparison is presented in Appendix (B). In some -

BRI b g
L

. g e

cases the finite element method can provide an approximate solution

of the same order of accuracy as the finite difference method, but

Y at less expense in terms of computer cpu time. The accuracy of the

solution of any of the two methods depends on the mesh size and the
order of approximation in the solution. Problems of stability and

convergence can occur with either method. 4

- g e - * .

Y 3.2 Review of Some Finite Element Applications in Solving Flow

Do e

Problems

Several inves;igafions have been made recently (58-67) to
find numerical solutions for the governing equations of motion of
fluid flow by using the finite elemehtltechnique. In alllof these
trials the method was sinbly a process of numeriéal approximétion

- to the éontinﬁum groblem in thch the *unknown functions were gs#;lly

replaced by an approximate set of functions together with a finite

set of unknown parameters which described the value of the function

at some discrete points in the flow field.
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"o
In the, following some important woérks, on the applica-

tion of the finite element technique to solve fluid flow problems,

Iy - ‘
are reviewed.

3.2.1 Incompressible Inviscid Flow Problems

In .1971 de Vries and Norrie (56) applied the finite

ey e -

element methofl to solve field problems governed by Laplace equa- .«
+ tion, and in particular, to potential flow problems. The go(tern-
ing equations in the case of a two-dimensional, incompressible, ¢

irrotational flow were,

.i, . Vi = o, P2 = 0 (3-1)
o Lo 3 o w3 .

; . énd u - 3x v oy 3y (3-2)
‘ where Y was the stream fun%,

¢ was the velocity potential function,

and u,v were the x and y velocity components.

The boundary condition at the solid boundary was
\g_.g_=gw.p_ ' (3-3)

where n “was the unit vector normal to the surface,
q was the velocity vector

* g, was the .vector that represented the velocity

of the solid boundary.

-
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The potential flow problem was then reduced-to the solution of
Laplace equation subjected to Dirichlet boundary conditions,

%
Neumann conditions, or mixed boundary conditions. The variational

functionals of the equations were obtained and then minimized to

determine an approximate solution of the unknown dependent vari-

. ables { and ¢. The first example studied by de Vries and Norrie
'ﬁ ' ¢
was to ‘consider the two-dimensional, incompressible, irrotational

flow over four irregular shaped‘bodies placed between two parallel 3

walls while the apbrogchinq stream had a uniform velocity. The .

- methed of solution wés also applied in the study of the flow over

an aerofoil set at an angle of attack to the incident stream.

Vooren and Labrujere (57) studied the case of the incom-
pressible inviscid flow over an aerofoil in a non-uniform stream.

% R " . The governing equation was written as:

o

A I 40 (3+4)

]

where the vorticity L(}) was constant along the stream lines which

coinsided with the pathlines in the case of steady flow. The

solution, which was -of the iterative type, started by assuming a

bl R

v

et

partic¢ular vorticity distribution everywhere inside the flow field., .
The differential equation (3-4) was then reduced to Poisson's

equation which was solved by using a variational finite element

technique to cbtain the distribution of the stream function v,




.
.

In each iteration the vorticity [ ({) was estimated from the values

obtained in the preceding step. The solution continued until the
S : , !

calculated values of {-and [ converged to the assumed ones. Another

<

application of the finite element®method to solve pétential flow

problems was given by Doctors (58).

o

3.2.2 Slow Creeping Flows

[ o
v

Atkinson et al. (59, 60) developed a numerical method for
solving the Nav%er—Stokes equations for the class of creeping flows
{(low Reynolds number flows) by ‘using the variational approach. In

. </
steady creeping flows the inertia forces are very small compared

with the viscous‘forces.ané/the equations of motion in the case of

°

two-dimensional flow can be written as:
1]

" e vty = 0 ’ (3-5)
where Y 1is the stream function and
. » . °
‘ Y4 EN N 3"
" = + .
. . v ax" + 2_8x!8y2 oyt
A variational principlb was used to construct the finite element ’

solution of the axi-symmetric flow in cylindrical'coordinates and ¢
planar flow in rectaﬁqulér coordina%es; The solutions for‘the case
of the flow in the entrance region-of'a channel and the flow around

a sphere were compared with other analytical and numerical solutions

and good agreements were achieved.-

o
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® TRompson and HAque (61) developed a higher order finite

o T

element method for the analysis of the creeping flow of -an incom-

¢

pressible material. .The governing equations of motion were written

-
0

LA “
with the pressure and velocity as dependent variables. A candle

2

_slowly bending under its own weight was used as an illustrative

2

cexample for the application of the method. - o

.r .
v ¢ o
& ice v -

. e

More. applications of the finite element method to study

©

u

the viscous creeping flow problems are described by Yamada et al.

(62), Lyness et al. (63) and Zienkiewicz and Godbale (64).
© t -~

°

3.2.3 The Two-Dimensional Steady Flow’ of a Viscous Fluid

c s , .

< 3
9 ° J

Cheng (41) suggested a finite element me thod to-be used

for solving the Navier-Stokes equations for any arbitrary region

v 5

of interest. An unsteady flow approach was used to eliminate the
difficulties associatéd with the noﬁrlinearity of the qoverhing
. ¢ N o

° [ 3

equations. The two-dimensional time-dependent Navier—Stokes_
[ed ¢ o
“ v LT 9 . . . > “
equations were expressed in terms of the vorticity transport equa-

<«

v <

~ -

-tion and the stream function equation. These eqpa;ioﬁé weﬁe solved

. numerically by using the finite element techpique. The variational

‘approach was used to derive pﬁe finite élement form of

c 3

the equa-

@ a

tions, The exact variatiopal functional of the stream function

e

equation was known and a gseudo-variational functionalr was, used =
o . : . ¢ B

2

for the vorticity tranéport equation.. The methad for solv{ng the®

»

() «

-«
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y ©

development with time of an unsteady flow approaching steady*state,

whicl was previously suggested by Crocco (65), was used. The nbn;

v

lirearity in the Vvorticity equation was overcome by evaluating the

P

non-linear terﬁs using values at the'ﬁreviqus time.ste?.' The

equations . considered were, S R
V2 = - (3-6)
3, AW ol T
T d{x,y) Re Ve s (3-7).
where  .[ was. the vorticity and u = CI v'= ;‘%%n. ’

Ay

~The method was applied to study the planar two—dinenéional; s

-t

flow inside a channel with a constrictioh. A non-slip boundary

condition was applied at the walls and ﬁqiseuille type flow was

assumed at the entrance intp_ and exit from the channel far from the
o . R . .

¢onstriction. The procedhre of the numerical Solution was to start

<

. p ’ .
, by assuming initial valueg for the vorticity [ everywhere i the

. flow field and then to solve equatidn‘TB—ﬁy to obtain the Y distri-
bution;by minimizing” the qorrgspondihq functional. The next step

v

o

n .

“was to solve. for therortiéity  at the future time level by ‘mini-

mizing the functional of equatigh (3-7).. It should Be'noted that

the time derivative of the vorticity was substituted by its forward

fingteidifferenée approximation. © The éonputations were "carried out
to values of Reynolds numbers for which a separation eddy.was

established downstream of thre constriction. The results were com-
H o . <

B

[
-

49
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. that they were comparabb.

" .92), Bilgen and Too (73) and Hood and Taylor {(74).

pared with those obtained by Lee and Fung’ (51) and it was found . .

.

v A

Olson (66) applied therfinite element method to solve the e

steady two-dimensional and axi-symmetric flow problems. By intro- _'“
. . »
ducing the stream function and ehﬁminating pressure the steady : .
two-dimensional Navier-Stokes eéuations reduced to . .
) 2 2 . . L.
vV“w*g&a(v ) 'gia(v L-o (3-8).
x . Y X L o
. .
$ ) N 1 ° I3
A functional was obtained for each of the two-dimensional and axi-
symmetric cases. A high precision, 18 degrées of freedom triangular
. ' _._.__';‘)
element, was used. A fifth degree polynomial was used as an inter- g
L] Il
polation function for |y and following the standard finite elemenq' X

derivation, a set of non-linear algebraic equations for the generali- .

zed coordinates was obtained. These non-linear equations were then
solved by using the Newton-Raphson iterative scheme. The method of

-

solution was verified by applying it to the solution of the circula-

tory flow in a square cavity and the flow over a tircular cylinder. -

Good results were obtained in both examplés. -

. o ‘ B '
~

-y The finite element method has alsc been applied to solve

- -~

the steady equatith'Bf fluid motion including the work by‘Tong (e7), ;

Gartling et al. (68), Kawahara et al. (69), Guymon (70), Baker (71,

[ . . v i - -
© : . ‘

' \ ;




3.2.4 The Two-Dihensional Unsteady Flow of a Viscous Fluid
Lo . 9 “ A

w
°

‘ '

-~ L)

Taylor and Hood (75) suggested a numerical me thod’ for

-~
-

finite element technique: Two_alternative'formulatioris,-of the

equatlons were presented, the first was in terms of the dependent

.

variables, éeloclty and pressure gnd the second was in terms of

" the si:ream function and’ v@rticity. The major part of th91r:\vork
- was %voted to a formlation involving the v‘ekloc‘ity and pressiure
,as dependentci/ariable's. ‘I"he method of weighted xesi’dua,lé, ip
ear'ticular. the Galerkin method; was used. tg der:';ve’ -the .finite _

. element form of the Navier-Stokes eguations. In the case of

- ' two-dimensional flow, three equations were compiled’ at each node,

. two-from thé.momentum ewhs and one from the continuity equa-
A
tién.' Phe unknowns asséciated with each podal point were u, v

and p. These efjpations, which were directly coupled, were

s
-

agsembled into a single’ matrix problem and solved by using ‘an

' .
\v N

. iterative method " - . *
L

- . . <

“

. A 4 o

In the same work by 'I‘aylor and Hood 1t was stated that,
* . - N

the dete;;mnatlon of reallstlc boundary’ condltlons at the 1n1et

' and ex:Lt from_. a contained flow .problem is an extremely éifflcult

task It was also stated that if the'velocities '‘at these points

s ’ I

were unknowh, then #t would be reasonable to assume the value of

- ’ - .
. [
2 r
N 0

the stress ‘at the entrance and exit of the field or to 'assume-a

- N

. solving the time-dependent Navier-Stokes équatipns by using the
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O et 1, e e

o’

".. 'steady Or transifent solution was required.

”

. ® °
[ - . ~

-

value for the normal derivatikes of tse velocity‘Eonponénts.

The secohd method suggested by Taylor and Hood was tQ
_use the stream fun¢tion and vorticity as variables. The Gale¥kin
[ N‘ N -, : T ' . ' ’ . '
- method was used as with the'previous case to derive

o

finite .

.

element form of the governin§ equations (3-6) d (3-7). Aan

.

iterative methed was'used to obtain self-consistent stream func-

n
.

tion and vorticity fields. The 'approach depended on whéther the

v -

o i N w © : s
o

- v/ ]
e o . , 2 ° . -

For the steady/state,case’the_térm %%'in equation (3-7)

a
3 - o

will be zero.. In the solution by Taylor and Hood it was first

nécessary to assume. a velocity profile at thé entrance to and

-exit from the flob region. The solution proceddxe was to ghess

. .an initial vorticity distributiop‘and then to solve equation

_ (3-6) for Y. Thg vorticity.at theé boundary points was thern' cal-

. culated and g@uation {3-7) was solved for [. The stream-func¢tion-

“v

-

. ‘ - v ' 1 N . N
vorticity cycle .was repeated until convergence was achieved,

. B . '
%

In the® case when the transient solution:was required

, o
v . Lo

-t}j;e_Vaivue of the vorticity at the next time Step 'was obtained from

eéuatiéﬁ,(3-7)‘by using a forward difference time'stepﬁiﬁg scheme

and then using an iterative procedure to obtain the stream func-
" tion and vorticity fields, This method was applied to the tran-

.

«
/ . .
/ g - a B
~— .

e
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sient problém of theudevelopment of Couette flow and the results

" were compared with the'knodg‘analyticql solution and'a‘good'L

y ‘ e ' A
agreément was found. The mﬁfﬁod was also applied to other cases
\ . .
£6r which there wérxe no analytical solutions: N

Bratanow et al.‘(76) appiied the finife}elenent me thod
in the analysis of the ﬁnsteady incompressible flow around an

_ oscillating obstaclg of arbitrary shape. The eqhations of motion

considered were tﬁéyﬂelmholtz vorticity equation (3-7)" together
with the stream function equation (3«6). The pressure distribu-
tion for a given velocity field wéé ocbtained independently from

4‘ @ ¢
the equation,

. ‘ 2 ‘6 3 ‘
¥ Vp = =pQ . (3-9)
: : © o= 22 3V _ 2u dv
where Q =, 2(8}' ax - ax ay)

o
L] -

JAt a particular time step a direct variationg fﬁnctional existed

0
»

3

for éqdatiéns,(B-G) and (3-9), however because of the non-linear
convedtive terms in equation (3-7) the variational functional -

cpuld not be obtained. To overcome th;é difficulty the non—
linear terms were-linearized by using a Taylor series expansioﬁ

of the velocities in terms of'vortiéity as follows: ‘
‘ >

°

¢
.

°

éu 1 3% 2 . N :
l}(t+At) = u(t) + ('rc)tdc + 2T (Wt(dg) e (3-10)
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The boundary conditions for the stream function, vorticity and pres-

©

sure weére described at the. four boundaries of a rectangular flow
. e ._ ‘ . -

region by defining the free stream conditions. The conditions on

the solid boundayy were made to satisfy the no-slip condition ana

- >

the pressure gradient normal to the abstacle surface was assumed to ’
be zero. Further details of this‘study can be seen in references
(77,.78). The application.of the method to the analysis of the
three-dimensional unsteady Qiscou5~flgw around oscillating wings is
described in reference (79), while other applications in unsteady

aerodynamics can be seen in reference (80).

4
-

v v

Smith and Brebbia (42) used the finite element technique
4 L]

for studying two—diHPnsional transient i;cqmpressible viscous f;ow:'f
Thé'problem considereé was the vortex street development behind -a
rectaﬁgﬁlér-obstructiog iﬁvé channel of fihite.widthi The governing
eguations weré written inwtermé of the:stream function.and vorticity
as variables and a variational (Galerkin type) statement was used

to deriventhe finite‘element form of thé equétions. The, solution
'strategy was similar to that of‘Bakeré (71) , however a simpie Euler
time integration scheme was-uﬁed and a linear intexpolatién function

was also considered. Due to the inherent instability‘of the explicit

scheme, the time step was very small. 'Smﬁth and Brébbia found their

. approach to be sgfficiently accurate to describe the overall flow

c@nfiquratién for Reynolds numbers up to 100.

*
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s ‘ . Kawahara et al. (81) have'developed a finite element

method for studying the steady and unsteady flow of an intompres-

. sible viscous fluid. "The non-linear equations arising from the
. 3 . ) ©
. N . finite element analysis in the steady flow problem were solved by
§ ) using the Newton-Raphson method. Steady flows of temperature

', dependent free convection were also descretized and analyzed by

uéﬂhg the Galerkin firite element method. The method was applied

. (/’ to study the two-dimensional steady and q}steady incompressible

flow of a viscous fluid through ‘a channel bounded by ‘rigid walls,

one of which had a sharp corner. The method.was also used to study

the* free convection, 'in a two-dimensional rectangular reservoir,

with different boundary conditionq for the temperature. .

-
-

ve
3

More applica;ions of the finite“element method for solv-

»

B st e b SRR T = -y
CEERELS . N ol dat]
s A

ing the unsteady Navier-Stokes equations were carried out by
Ikenouchi and Kimura (82), Aral (83), Lieber et al. (84) and, " .-

Argyris and Mareczek (85). ‘ ’ v

¢
Y

3.2.5' Steady Two-Djmensional Flow of a Viscous Fluid With Tempera-

: o ture Variation

’
Tﬁgl;ﬁd Davis (86) applied the fiﬁ?teuelenent“method to

study the.convective heat transfer between wo parallel planes.

The problem considered was that of a fluid of constant properties

0




0

flowing. in a steady laminar .motion between two infinite stationary

parallel planes with no interpal heat generation and the viscous
. , .

dissipation was neglected. The fluid temperature at the entrance

of the test section was assumed to be uniform and different condi-

.

. tions were considered for the temperature variation along the two

B

surfaces. A parabolig velocity'distribﬁtion was assumed to éxist

P 1
everywhere in the test section. Moreover the temperature distri-

bution at the exit of the test section was assumed to be fully

Beveloped. According to these simplifications the energy equation

reduced to,

2

Bz'r .
p C u 'é— K ( + -a—y-“i- , (3-11)
where K was the thermal conductivity of the fluid,

C was the specific heat at constant pressure,

o

and p,T were respectively the density and temperature

of the fluid

o ©

The quasi~variational functional used in this study was,

5T ar |
) 1n = J [ocu g+ (D2 4 (ay)f}]dawf (g - n)Tds

A . S
e ’ s
',; ' ’

where A the area of the f}ow domaln“
n a umt vectot normal to ﬂ\e Surfac:e

° q the heat flux

S the surface surrounding the flow domain.

3
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\ 9
The obtained solution was compared with .theoretical sofutions

2

aobtained by other authors and a good agreement was achieQed.
é
Skiba et al. ¢87) applied the finite element fethod to
\ »

find a solution for a class of two-dimensional viscous fluid flow

¢ [

problems in which the Boussinesq approximations were assumed so
that the effect of temperature variation was negligible except on
the body force term, The solution was based on aq apprpximate
variational pringiple in the sense that one or more terms in the
governing equation were approximated. These principles were pre-
viously devel&ped by other authérs, for the ;ontinuity, momen tum

P4

+
and enerqy equations. The continuity requirements were satisfied

o

by introducing the stream function { which reduced the problem to -

the extremization of two coupled functionals of the momentum and

energyAequations. The solution started by assuming initial values

.

for- the stream“funcgion () and then calculating the values of

the temperature (T) by extremizing the energy functional. Using

. - _
these values of ¥ and T in the momentum equation new values oﬁ Y

could theﬁ be obtained. Several iterations were performed to .

attain consistent ¥ and T fields. The natural convection in low

aspect ratio rectangular cavities was studied and a sFlution was

obtained. This solution.was conpated‘with other analytical and

experi@ehtal solutions and an agreeﬁent was achieved.

.

(2

n
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using it to solve field problems, is to divide the solution ddmain

may be one, two, or three-dimensional aeccording to the problem

" been dgcided and the finite element mesh has been constructed, the

LAt

’ " CHAPTER (4)

FINITE ELEMENT FORMULATION

AND METHOD OF SOLUTION ' .

4.1 Introduction to the Finite Element Approach

-

The basic idea of using the fihite element method, when

e

t

into a fiqite number of subdomains or elements. These elements

under investigation. The shape of element to.be used can be one

of many different forms, for example, in the. case of a ?wo—éimen— .
sional domain the e%tment may be triangle, rectangle, quadrilateral

or curved. The dégrees of fréeaom of an element depend‘ on the

nunber of nodes in\that eiement and the number of variables as-

sociated with each node. 1In a trianéular shape element‘the nodes

are situated at the Yerticés of the triangle. Often tﬁ:-nodal

variables or the parameters adfigned to an element are called the

degrees of freedom of that-element. Once the type of element has

behavior of the unknown field variable over each element can be
approxfmated by continuous functions expressed in terms of the

ﬁqdal values of - the field variable and sometimes the nodal values

" of its derivatives up to a certain omder.- The approximate repre-

- °
e
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sentation of a two-dimensiorral field variable ¢(x,y) within an

element 'e' can be written in terms of the element unknown para-

meters ¢j as,

\

N (x.y)¢i {4-1)

where m is the number of unknown parameters and Nj(x,y), i=1,"m Q
a - ' rd

are the elem®rt shape functions.

.

The element shape functions cannot be chosen arbitrarily
because these functions have to satisfy the continuity requirementg

on the element and at its interfaces to ensure the convergence

o

criteria of the method. More details concerning types of elements

shape functions are given in references -(88, 89).

One of the main advantages of the finite element method

.

) , .
is the. variety of ways in which one can derive the finite element

form of the governing equations of a problem. There are basically’

three different approaches:

4

1. The Variational Approach ' ) oo

v

v

In this approach a physical problem, governed by a set ..
: &

of differential equ&tionsl may be equivalently expressed as an - § \

5

extremum problem by the methods of calculus of variations. For .
‘ ?

°

.
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example, if one considers the simple pr?@lem of potential flow
{l -

. governed by laplace's equation

.(h‘

2 2 ’
4 M + E—-Q- = ( (4-2)
3x2 dy?

" where ¢ is the velocity potential function then Llis‘problem may
be solved by extremizing the following intelqral or functional as

it is called, Lo .

. 3 ’ P '
I =[S ’:[(35{)2 + (g—?l)’]dx dy (4-3)
Q Jdx - 9y .
with respect to the unknown function ¢.

In general it can be shownsby using variationral methods

(ir particular, Euler's theorem) that the extremization ‘of the

general functional I(¢) whére

Lo ’ ‘ eox,y)]) = ST f(x,Y;d),gQ,-a-Q)dx dy - (4-4)
; : ax' 3y o

' ' 0

|

will result in the following differential equation

Ve

. 3fF D 9f 4~ 2 of -
: o g 1- 22X 3.0 S (4-5)
96 3x 9 dy "y 98,
a<5%) A

<

Using the same theorem it follows that the extremization of the

. °

functional I° (¢) in equation (4-3) is a necessary oondition for

the satisfaction of equation (4-2). .

60
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- 2. The Weighted Residuals Approach

- .

Physical problems of the Laplace's and Poisson's

equations have already been solved numerically by the finite

element method. An excellent description of the numerical- pro-

5

cedure for these and other problems is given in references (88)

and (B9). .

? '

In this approach two steps have to be carried out.’ The

first step is to assume a general behavior of the dependent field

<

variable in such a way that it can approximately satisfy the
£

given differential equation and the associated boundary conditions.

¢ -

The substitution of this approximation into the differential equa-

tion results in some errors called the residuals. These residuals

5
©

are required to vanish in some average sense over the entire

solution domain. The next operation is to solve the.equations -

-resuitinq from the first step to find the approximate solution.

The advantage of this approach is that it makes it possible to

extend the finite element method to problems where no variational

>

functional is avaiiable or known.

3. The Direct Method A o .‘ ‘o

This method can be used only for relatively simple pro-
” o . ‘
blems. The procedure is to épply the éz;erning equations to each

.,
b

oE
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individual element which results in a number of algebraic equa-

a
o

¢ w tions.: The set of equations arising from the different elements
o ‘ . ’ : ' f °
cdan be arranged in‘a matrix form and sqlved to obtain the required

“ solution.

ot
¥
) -

.The details of the three different-approaches including

many applications are gi;en~in raeferences (88), (89) and (90);'

v

' 4.2 The Governing .'Equations Q’~V1’scous Flow

& i
L3

<
©

)

The qoverning‘eqhations of motion for the general tran-

-

2
‘sient case of two-dimensional flow of an incompressible viscous -

an
v
¢ .

fluid can be written either in terms of the velocity and pressure

as dependent variables (the Navier-Stokes equations) or in terms

1

of the streéam function and vorticity (the Helmholtz vorticity

©

equation). ¢onsidering the second casbfthe equationé are,

v 2, - 2, - ’ . .
%—%+§}%%§-‘§¥%=v(§;§-#§;§> (4-6)

o2 2y, @ _3
t”c ox2 f §;¥ \ ’ (4-7)

where [, is the vorticity and ¥ is the stream function. - The pres-

- i

sure distribution for any given velocity field can be obtained

o

from the equation, ‘ .

9x2

2 2 ‘ o
SE+5E-0 oy (4-8)
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du v dudv

where . Qx,y) = 2(ax 3y 3y 3;)

and i » u‘='%$-., v = - %%-.

4.3 The Variational Functionals

R ’ ' In the present study the vatiational approach wasuuséd

use of the presenée of the non-linear eonvec-

’ &

—- does not exist be

tive terms. A pro for the non-existence of a variag;onal‘

_ functional for the vorticity equation is presented in reference .

v ‘ (91). A limited number of quasi-variational functicnals were

tried previously as, for example,uthe study by Cheng (41) to
" obtain the steady state solution of the Ngvier-Stokes equations

and the study by Bratanow et al. {(92) to obtaian}Aerdepgndégt
. LI
. -
solutions for the flow over stationary and moving bodies.
. . A :

‘
5

In tﬁe'study by’Cheﬂg (41), thé'velocify componients 'u .
and v were approximated by their values at‘t_heuprewious ‘time stei;.
From the author's point of view, this approximation is reasonable

N -

so long af the steady state so;utfon is required. No studiésfhave
! ‘ ' S

A :




s

-

“ been made to apﬁly thg methpd‘to;a time~dgpendent proble@. In - :
the stede_stagé.analyéis carriéd out'by-Chqu the ‘méthod codld, - )
only be used up to -values of Re?ﬁolds/;;mbers.for which a separa- .

[ s N RS L. o,
tion eddy wasWEstablisheéd in the'f}ow;‘fFuiéﬁéwmoré the assumpt}én .

-

0 —

of a Poiseuille velocity distribution at the exit of the flow

.
.

field simplified the solution of the problem. Y

- F . - -

In the work of Brat@ngw‘aqdifcer {92) it was assumed

that the vorticity field was not sensitive to incrémental changes *°

in velocity. The velocity - componénts u and v were approximated
- - A
by using the Taylor series expansion of velotities in terms of

vorticity as given in equatioh {3~10). It is the opinien of the
author that these approximations and assumptions add some re-

styffrtions to ‘the general use of the method. In. a previous work
\ . -

by Bratanow et al. (76) it was assumed that the boundary conditiong

~

~ NI
»

for the stream-functiqn, vorticity and pregsure,lwhich‘Were'conr_

pletely defined from the frgeétream conditions, were unchanged

L8 . Pl =
.during the numerical integration of the vo¥eigity transport .
<,

‘equation. Sjpce the problem considered by Bratanow was the time- -

-

e \™

dependent flow around an oscillating obstacle, the above assump-

o 8.
tions for the boundary conditions seems to be in contradiction Y

swith the physical situation of the problem since flow disturbances .

~
L3 - b .

would propagaté downstream. o , ‘f

. 1
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. In the present method thecvortlclty transport equatlon

L4 . T, " . ] s - ‘ .
toge%her with the stream function 'équation are ﬂintegrated by using

4

% . .
' flnlte elements for space approxlmatlons and a welghted average
. R s . 5 ; 'y . » . N .
‘ o methfb& Mdlrectlon of tilpe., . .
: 'o" . . ] o
[ )4 N * : " i ’
.f S H e s ; . , s R
. . Consider w,' and r, t;c represent the Stream functlon and
iy " * R
Yy : T . vortlclty at .the n tlme lewvel (t = n. At) and \p el Cn+1 to repre-
.gA " ’-7\ - . * . PR o ey ' o
:;. . . - seht the" same vanables a‘t the, (n+l)’ tlme levé‘l\ where“ At is, the
o J P tz,me 1nctement.‘v Consxder also w +9’ c to represent the stream
L IR ™ . O
. A . . ’ \ v N
g ©. . functlon and vortlcltz at an 1ntermed1ate level between the n and
. Ia PR .; r - ey ‘- <
? e LT (n+1) 1 vels suchathat t. =‘ (rrke) At and 0 < 9 < 1 Appl)jing the
'l' e ' ““ . J‘ ' .' ( i ) ¢ i
P e "'Q IR vc‘srt:.c1ty equation at the (me) J,eavel and wrlt:mg the subscrlpt 8~
b3 PN 3 .
b ., .. .~| ... . — ’\ | \
ji" ! - / . - to repres‘ent; that leveI, then one obta:.ns, L . _ L
C o, . , . __.‘ ] R .
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’ . e : e e T
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L1 Ay ! : ' S
\ when"e ¢] and a ful,ly ampllcxt sqlut:.on when 6 = 1 'I‘he stab:l.lity
-of the J)umerleal method therefoﬁ depehds of the seleétlon ‘the |
B (X4 . . . , Q
value of 8. R R e ; “
r 3 _ L - ~. v " 5:‘
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s e O
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i . /7
a and b) can be estimated as follows:

'Wheie thé,subscript‘é’repfeéénté‘the‘timé"(ﬁ¥épﬂt)f 'ﬁultiplying .

a

ant when deriving the variational functiénal‘of equation (4-9).

The nbn-lineﬁx terms in the same equation will be approximated by

AN
»

‘using linear ihterpolation between the n and (n+l) ‘time levels as

. ) e R

follows
39 W ay )
8 _ n+l. ~'n A (e
3‘;"—9-:—-3;-9+ (1 ‘9) ™ (¢-10-a)
. . oL ) 214 Y 4 . .
. g _ n+1l - n ' 102
‘ ‘ T8 Tyt (108 3= (4-10-b)
Wy 954 , .
The terms Yeadl 3;— can be obtained in a similar way.’
S . ° 4

a
<.

the spacial derivatives on the left hand sides of equations (4-10-°

.

Consider a‘geheraﬁ variable f(x,?,t) and consider a'sbécific point

in space (xl,yl) at which this variable is f(xl,yl,t)'orrbinply.
u'ftf . Using Taylor 5er1es expans&ogfthen; :
‘ = £y - 8 0EGD), L—A$£E<33§5'F e
. ) '5’€Se 2T axZlg ~ tttre -
o . ‘.'. C C (411
et [11-9)At]2 L
Erant ,fe + G- °’At(at)e 2T ‘atz g ¥

s

the fu-st equation by (1-9) and the second by 6 and ad'ding\ the tch

N - - .

equatxoﬂs then, R

‘The"truncation error associated with the calculations of-

\.
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- (1- . 2 : -
. fg=a-ef +8 £+ o[Bn?] . (4-12)

. v -

From theé above equation it was .»sho'vm that the truncation error was
. of second order of the time increment. At which should be s@all\and
" of such a value’that . the solution convérges. From a comparison,
. presented in Appéndix .B, ‘it was'shown that the truncation error o 3

associated with the finite element method was of thé same order

.of magnitude as the finite difference method when using a simple

regular mesh and linear interpolation function. It was concluded

r

that the finer the finite element mesh the less the truncation - .

error, co ’ s ’

. \ i
. Lo C e
. » . r
e [} - -

L

The va_ria?i}onal funct;iohal of vequation (4-9), after cal-

culating approximate. values for the Pon-'linear terims, was

i dus ats  ays ok

®

= %
X, (5g) éf ([, +

. 3'8 = 3y ax. - ax ay g+ T
v - 3% LN _ | .
.. 3-[(3;~»2 + (5;—)2]}-dx»dy 41y B
where Q-was the solution domain and the superscript * denotes that - .

L

the values were approximated by. using equations (4-10).
. o ) "o - C " i

S . . - . -~ -
- o

'Applyi“ng the stream function equation (4-7) at the (n+1)

‘time’ level, then | R - N
° : : » . , N ' -

.‘ .7 2 - - - . - /
: ¥4 4 o (4-14)

-
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/-\' The variational functional of this equation is exactly the same
i i} as Poisson's equation (see reference 88) and can be written as:
: LY <9y : '
. oon+l o n+l, oq .
= ——)f ¢ ()] - < (4~ :
xz(“’n+1) éf &ﬂ[( ax ) ( 3y ). 1 wn+1 Cn+1}dx dy - (4 ,15)
9 ' ‘
s In the rest of this chép_ter the method of deriving the

. .
finite element equations is considered and then the procedure of

+

solution for both steady and unsteaidy flow problems is presented.

. ' b
i .

4.4 Deriving.the Finite Element Equ?qtions . E -

- .
- - . - . . - .
. . -

In deriving the finite element equations from the known

/ o veriationel functional, *the‘first step was to find a.suitable ap'

proximate representation.for the variation of the field variable "

fi.l ‘ .~ over each element., According to the choice of the‘elerpen't shape -

“function ‘the’ continuity of theA variable: anﬁ its-derivatiy{to a

‘certain order can be achieved. ‘Although it lS not a rule to uSe
'E*: ' : one shape 'fuh,ctlon to .represent the variation of dlfferent var1-, ..

ables, however, for.the simplicity df thls analysis, tift same )

elemem; shape functlon was used o gure an approximate xepresenta—

) txon for the variatlon of. the stream funct:.on w and the vortlcity

. P 4 withm each element. Us:.ng pquation (4-1) the approxlmat.lon of

J - - 3 S s
‘ y and T over the element e1 can be writtep as: .
v T ) . ¥ 3 . . ' iR
. g - , 7 m - r
. (e,) : )
. T lk( i" = ‘L. (x,y)w s ) (4-16-a)
h- - S L) ‘j' 3 ' Co C '
P P s . . N . ‘. ¥

14

",_ y ‘ ' P
= B ‘\ ’ - . " e ) 4 . ‘1/




(4-16-b)

The variational functional given in equation (4-13) can

. be written ih terms: of the element parameters as:

K : L , .
Xi(ce’ = L [/ {[gz([N](}){;e}(l)) +‘%;([N](l){?§}(l)? )

i=l e
L

3L o () 3 e (i) v (1)) D foq (i) 4 (1)
s N (e - D e N g ]

>

GY,. (1) Vpd po(i) . () 2 8 poald) s 1 (i),
[n] {ggh ™"+ 5{(5;{N] {ggh ™) +(3;{N] {ce} )2]

oo
.

\
\

} ax ay , -(4~17)

.where [N](i) represented a row matrix and each of its eleﬁents was
! ! . . . » -
one of the shape functions of the element 'ei', {Ce}(l) represented

' 'ei',v{we}(is represented a column matrix of the nodal values of
the stream function in the same element and k was the total number

of elements inside the solution domain.

- - )
-

6
-

' . Using-a weighted average time nmrchihg scheme the time

¢ -

derivative of the votjigity was approximated by

o

t 2z,

: 1
g Fre

o At (Cn+l - Cﬁ) RS o (4-18)
'] ! A ‘ ."

"Substituting equation- (4-18) into equation. (4-17) and'writinglﬂ;"

.

a column matrix of the nodal values of the vorficity in the element .

- .
Rt e o T L L U ORI




5 ‘ ] ' -2
N as [Nx](‘? and %;{N](l) as [Ny](l). then, the functiopal

xl(Ce) could be written as;

-

"k , . . . '
. (i) (1) 1 (i) (i)
Xy ek = T JJ {[ N] {‘n+1} - KE{N]. (¢} +

? . . l:l el . o,.'-’:,'n\v.,‘

o]

;

I, ](i){W'}(i).[N ](i){c.}(i)_[Nx](i){ws}(i).

a »

) In ](1){;*}(;)1 [N]m{C J % [<[";](i){tg}(%))2
‘[N ](1) ot 2 ax oy 19y

L4

'* The extremlzatlon of the funcuonal (4-19) with respect to each of

>

the nodal values of CB was a necessary condxt).on to-sat:;sfy the

,vorticity equatlon. Conmdermg a typlcal nodal. pomt j in t:he

1 R
g'W"‘(-w S
.

.solutlon domain and extremizmg the functlonal (C ) with respect
X3

pe

.to the nodal VOtthlty r,e , the followmg equatwn wds obtamed

A ,

% - "
i, : .

};, i=] ei : ' \\ )

[Nx](f){cgf(i><~ {yx](i’Iwg}‘if.[uy]‘f’{cg}(i’] ),

L3

, (1), v (D, () £ o~(d) (i)
Rg— {c ¥ = [2[N ], (e 7N I (g ' |
: atej 2 x Bcej 6‘ -
2[n, ](i){c }(l) O R R L D P S 1,L
4 8taj 0 ' ‘
: ® . S (4-20)

' \

where L'was the humbér of nodg‘l pbin?:s 'ins‘ide the solution domain.

T , ‘A Equation A('4-20) represents & set of linear algebraic %ﬁims and

70



upon writing

Qe -6 Cn+i + (l—e)cn ' ‘4-21{
s ‘ %\ > 4. )
the only unknowns in these equations were c i at the L lnterlor

*
.

points, prov1ded that the values of w* and c* are known. The

final form of equations (4-20) can be wrlttenfﬁgz

» .

RERCY {CJH'I'}'- {r} ' (4—32)‘ ‘

The finite element equations given 'in (4-22) are linear algebraic

equations which can be solved to find the nodal values of the

o LT ' 4
vorticity at the (n+l) time level,. —_—
. The next step was to derive‘the finite element equatiops . :
correspoddin§ to the stream function equation (4-14). Using the
. a . ' ‘

previouslno;aiions the variational functional given in equation
* (4-15) can.be_writteh in te;hs of the element parameters as:
» % N - .‘— 5 .
' K COPIRIIEY “ (Ar, (i)
X, (¥, ),= I If {s(([u ] } )2 + ([N 5 12 -
2 "n+}. . " Y, n+l . .
o , 1-1 e. ¥ N . , .
. 4 L 3 : . . o
» ! : i .

[N](l){wn+l}(l) [N](l){c }(1)} dx'dy

o 3 - B .
f ) L

(4-23)

»
-

’ " Extremizing this'functionqlfwith respeét to each of the nodal values

¢

N

)
of the stream functlon at the L 1nterior poxnts the following_egmg-

®

tion was obtainad /’ R




k .

[P ope (i), g (ddp, p4i) B LA
i=1 e, [ [Nx;I : {wn+l} INx] R {wﬁ¥l} *
i - n+lj .

. -

(i) (i)' " (1) = 3~ (1) . - .
N N e - o
[ Y] {wn+l} [ Y] ?wﬂ+1j {wn+l} I . .

.

I (i) 3 (i) (i)
[n] — {y_ . YEIN] Y (g
. | awn+lj n+% L n+ } ‘
o . : - co - (4-24)

l}(l)]dx dy' =0, 3j=1,L

. . - * ‘ -
wﬁere j-was ‘a typical point’inside the solution domain. Again

. ‘ equaﬁion'(4:24) feprésented a set of linear algebraic egdations
which were written ‘finally in 'the simple foxm,.

-

(B) {y, V= {6} ) ' (4-25)

. The set of equations (4<25) can be solved bf using a direct or
: ’ v

iterative method to find the Stream function field which was con-

- .7

sistent with the given vorticity field. ‘ o //,,
P - : . . )

e '435 P?bcedure éf'tomputatiohs to Obtain' the Steady State Solution

4 4
N . g . M
<~

[

el Conéidgr the four sided region (ABCD) shawn iH.Figure (6)

¢ . , ?

withva.pody of arbitrary qroééfsection within the solution domain,
L - “"The steady upstre&m béundary épnditions (4] can be calculated
from the assumed steadytveloéity profile at the inlet to the flow

-"._~ ) _ ‘ . . . ,“ }
field AB as given in section (207.1). The frée stream conditions

« [}

e, . can be uSed‘lo define‘the.boundary conditions at the-two sides of .
. : " the.flow field AD and BC, providing that those sigdes are a large "
) .. : : . R 7 . . L ) . 4
- : ’ :

e . PR
« .




distance away from the solid body -such that the boundary layer‘on

the body does not affect the freestream. In the case when the two

LY

sides of the field are stationary the boundary conditions on those

sides can be defined in, a way similar to that presented in section

(2.7.2). The conditions at the downstream boundary CD can be

obtained by using the space-time dei.’ technique given in section

(2.7.4), or it éan'be made to satisfy certain assumed conditions

which shéuld be consistent and compatibia with Ehefphyslcal §itu§;

tion of the considered probiem. To’starf the solution a rel;xétion .
mgthod'@ay bqyused where a reasonable disﬁributién for the vorti-

city everywhere inside the flow field ‘is assumed. T

e

The functidnal given in equation (4-23) can then be

minimized and the réSulting set of £quations (4=25) can be solved

‘to find thé stream function distribution associated with the -~

_assumed vorticity field. These values of the stream function and & -
vorticity will be considered as the solution at the start of thé
A " calculations an, g, where n = 0). An iterative procedure can be

. _ . P , .

[ - . T .
.used to find the solution. at the next time step. This procedure
starts b% assuming the Vélu?s of ¢n+l and Lol (the élgser to the ‘
éofdtion the initial assunption the less number of

itgratiens will
. QeQﬁfcessar§),"k regéonaﬁ}e[ghegskisiFéfoon§i§er;w ;i~ané in*l to .
. ‘. £§ e*actli éhe s ame 59 Qg.and Cn feséq#ﬁivaly. An‘&pé;fgim{?{on
‘ fogJEQe c;évectiveﬂtermﬁ ;an be obtiineg by u;}ﬁg‘oquqt;ona {4-10- ‘

. . . L ” . ”




B .

[y

. u.' A

a and b). Substituting these approximate values in the functional °
(4-19) and minimizing this functional with respect‘ to the values
. ] of the vorticity at’'each nodal point will result lin a set of

-

algebraic equations (4-22) which can be solved to find a second

-
-

approxima'tion for the vorticity field at the (n+l) time lQVt.;l. A

second approximation for the stream fundtion can be obtained by
- . -

9 <¢

solving equations (4-25) as mentioned before. The values of the

vorticity at the solid boundaries at the (n+l) time level can be

‘calculdted after each iteration by using equation (2-16), The

iterative procedure stops when the difference between two successive

iterations is within a certain limiting value. In the computer pro-

[
gram the solution for a steady flow problem will continue to deter-

. -

mine wn+"' L at the next .time lewvel and sv on" until converyence

n+.2

. L , ’
' is achieved. The computer flow chart for \obtaining the steady )

ek

state solution is shown in Appendix (().
- - <

-
.

4.6 Procedupg‘of Conputations to Obtaim a Time-Debpendent Solution

'

’
- . .
.

The time-dependent solution, for. the case of unsteady flow

“ .« * .

approaching ‘the field can be obtained by 'usihg the following proce-
- . " - -
, dure. , The_ steady state solution obtained fram saction (4.5) can be
» . ¢ .. * . . . -

..

. ) e o ) ] ) I . ¥
.- <7 used’to dofine the conditions (y,7) ewerywhere in the flow fi¥id at
- . < the start of the calculations., The unsteady boundary conditions at
L. . the ups tream and thé.twp sides of the flow fiald are assumed to be
L. - " ' ‘. N ’ ' T " ’ [
’ predetermined anq can be qenerutéd from a4 given mathematical model. ’
. . b
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. The downstream conditions. can be determined by ‘using the space~time
, . .
delay technique presented in section (2.7.4). The rest of the solu-

tion procedure is similar to the previous steady state case, The
»

computer flow chart to obtair the time dependent solution is’ shown

in Appendix (C) and an example on the application of the method is

given in the following chapter.

N - J— PR




CHAPTER (5)

THE EFFECT OF A SINGLE ROTATIONAL DISTURBANCE

ON THE LAMINAR BOUNDARY LAYER ON A FLAT PLATE’

5.1 intrbduction .
.

In this chapter the effect of a two-dimensional‘ rotational
_disturbance on the laminar boundary layer growing over a-flat plate
was investigated using the vorticity-stream function method of solu-
tion described fully in Chapter (4). The free streangisturbance in
this example was simulated by a single vortex and the laminar bound-

- - ‘ L
ary layer was developed on a thin flat platé at zero incidence to

H

the undisturbed stream. -

The ;nvéstigation started b; éonéidering the rotational
disturbance to bé simhlated by a modified Rankine vortex in the on-
cqpinq free stream approachinq the flat plate. The limitation to
one vortex simplified the’analysis of the results, however i£~does
not imply a limitation to the method of solution as will be shown in
Chapter (&), . @ég eonsiderea flow field was the entrance regiOn of a
- <channetl with“a4%;at'piate”of“finitellangth s&tuated midway between
"the:two straight parallel sides of.the channel as shown in Fligure

(7). The effect of the vortex on the, time variation of the velocity

field, the‘drag‘coefficient on the upper and lower sides of the plate

-~
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and the lift and pitéhing moment coefficients were also investiga-

. ' . o LT
ted. The following steps were carried out in this investigation.

5.2 Constructing the Finite Element Mesh .

»

The three node flat triangular element is the simpliest

two-dimensional element, and it has the distinction of being the

first used and now the most often used basic flnite element, The
reascon for this is that an aasemblage of triangles can always be
made to represent a two-dimensional domain of any shape.. The finite

elemeht mesh used in this problem is shown in Figure {8). This mesh

was constructed in such a way that small elements were used near the

walls where a large variation of the velocity across the boundary

.

layer was expected and also small elements near the flat plate aided

in calculating the shear stress distribution and the drag force moré
accurately. .A finer mesh was also constructed near the downstream
side of the flow region in order to generate the downstream condi-

tions at any time step by using the space-time delay technigue pre-

sented’ in section (2.7.4).

5.3 Choosing the Element Shape Function

» .

The element shape function is usually chosen to satisfy
certain continuity requirements of tﬁe field variable and its deri-

4

.
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T ’vatiéeé af the ermentéinterfaces joining the nodal points. “In this]
° ‘ g{ddy the :continuity of the field variable at thre element interfaces
’, . *was only-considered. The shape function used was a linear .intérpola
) tion function and was written as:
S T ¢ ¢ = L & & £5-1) 4
A . : - k - 4
: k=1 © K -
o . Qhere &k was. the areé coordinate defined as: ' C b
o h ' E =+ (a. + b ‘x +.c.Y) b i=1,3 | J ‘
‘ \ s 7S B AU ’
® - -
] N ‘ s '-b .
“ and ¢, was the value of the field variable at.the nodal point i.
For fuprther details see Appendix (B).
. Using thiq_linéag function the finite element approximations for the-
" > . ' * B
. N ¢ . - o
- variation 'of the stream function y and vorticity f{ over each element
4 o ' - v
were wriiten'as: g :
. o . 0 .
. : (e.) = poq(1) .0 e
. i ,= [B] ) {w}( > (5-2-ar ©°
. [y .
' - S - .
. . e.) ! (1) - (1 5
~ " ‘r.( ,1) =-[8] ) {c}( ) (5-2-b)
a™ . A o ‘
o . S . 3 .
' () (i) BN
-wherg - ( B = [61'52 53] _ I
- ° T ) ORI
: e .. [ ¢
p ‘, 1| w - 1
N i SR -
. - . ) - "
|
1 “'3 L, K
N L L ll L 4
<o and the superscript &}) denoted the number of the element.
.
¥ . . 2 .".




K FEE

. m—mwunu-..:.u

EE

4” .

m .

e e P ARGt 2t A .. Ay

EST CHART

WY RESOLUTION T
W MEAU OF STANDARDS - 1963 - A

- - T

»

g 8
q "

. s
.
’ -
. .
L4 *
- S L) -
R Eo3et g R s WA 6 AT, 0T AN e Meed — i
h - Ay T ——
.
- - -
o - . - T
. .
.o . v
. . v .
. ) .
. - A
. £ d
A -
.
Al -
. . o .
4
- . t - ¥ -
.
v
o . . X
. L] 3
. R
- e~ apmer e -~ i
- vl dl NN R IS 7
oy o 1
N A . T X * A}
R .
.- N . N ~
N
- .. - . a
- 3 » . . b
B v et
< er . : \ ’ -
W . - T
. < .
/ n % | PR ¢ fo T -



TN G e N,

N
<
-

54 Obté.ining the Finite ETe'ment Equations . - oo

. The variational functional of the vorticity equation

/

wr‘I‘ft’en in terms of the element parameters by substituting equffions-

(5-2-a and b) into equation (4-19) as 'foifi{ows:

. K <
, 1 (i) (1) _ 1 pgq(id, ()
X, (8g) = iil i‘f {5 [5]< LY At (81" { } +

’
[}

- [B,y](i) {#’g}(i) [Bxl(i) {Ca}(i) - [Bx](i)«i‘#g}(i)

e i) T () (1), (i) | v () 2 ()5
NI (3 IR 1) R (IR A B K( 0 R 38 RS Ll

([8,1V 0815211 ax oy R )
| (i) _ 3 poa() 1 c ),
where [Bx] = ax [B] = E'[bl b2 b3] :
i e ) _ 3 (i) 1 (i)
and - [By] "3y [e17 = 28 [ 2 °3J

’

Equatior't (5-3) can be w‘lritteri."s'inply as:
. xl(ce) = I \n(ce) . (5-4)
. i=1 -

’ )

wheré\xli 'was the double integral over the elfément 'ei' written in

equatiéfn {5-3).

-~ a

o Lo
It should be xiot%d that the derivative of xli\(v‘;e) with

L
Fd

respect to the vorticity 3t a typical péint j will have a non'—zqro

value only if j is one of the nodes of the glement 'ei'_.* Therefore

-

L




21 At ey et "'M

_’7 nodal values of the variable g

e 0 "

A s

when minimizing the functional xl(;e) with respect to eich of the

03 the ‘summation over the elements

that contain the point j as one of its nodes may onl} be cor{sidered',

and

where kl is the number of elements that have the node j as ®ne of

its nodes. . - - . \
(- .

Suppose that the element 'ei' ‘contains the node j then the deriva-.

tive Bxli(l;e)/a r;ej can be obtained as follows: ‘ -

1

3% . (L) T . . . -
1i°7°6° 1 (1) (i) _ (1) (1)
—3—2;;wf = Kz'if Ej[[B] .'{cn+1} [e] {t;n}J ] ax ay +
: i

P
o

L
[

24,
i

1

(5-6)

~

(1), (i) 7
[a,] " lzg) c;] ax ay

Substituting from, equation (5-2) in equation (5-6) and r&earrarigin'g
. ’ -~ . B !

.

then,
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P TeR——
’
1
N
N
[
t
e o
1)

: s (To) .
CoMi e rl (1) . (i)
! N _A—'EAt if esley 8, 817 axay s {b 5by b, Byl ;f\j\\\\5>\\;\_

i . -

| , ) (1) 1 (i)
-~ . ,c:j[c1 c, cs] }]’{cn+l}' - [-A_E ff E‘j[gl §2 53]

l

4A
&

ax &y - == b [b b, b ](l’ + gj[c c c3](i)}]{cnf(i)_-

(1) ¢ ey (1) (1)
VlZA[[bbb] {Il)} [ c3]l-

*

[e, c;, ¢ ]yt [§1 b, 5,1 1 {zg}V (=1 .

1

L . - . .
Calculating the approximate values of dqa and l;a from the known
t . : ///

values ¢ and ¢ and the values of § 1 and Lo+l obtained from the Q'

RO 0 it T T AR et f o . e 5
. .
. .
, ) .
»
* =
0
4
B
.
-
,
7

previous iteration by using iinear interpolation, equation (5-7)

A '/c{n/then be written as:

o‘ D
¥ 3x. . (L) ’ P »
-1 °%14 "8 (i) (i) (1) (1) _ poy(d) (1) e ‘
L T, (174 Y - [ ) [(R]™* {23} (5-8)

Substituting this equation into equation (5@ and equating

8xl(§a)/3 ce.jfto zero, the following equatiqn was"chen obtained,

» . M <

A 3

K,
ax, (T,) © s
31; 9 — z [[T](l){c }(1) - [Q](i){cn}(l) -
: 0y  i=1 : |
‘ . N .
MM -04 3 =10 ' (5-9) '

where L was the riunts_er of'int‘ernal points an:}/ Cn" z:a were known,

-‘ ‘ | | | . ./
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P Equations (5-9) represen.t a set of linear algebraic-equations . .
e which may be written finally in the form .

f \ : T

8 (.} =1{F} " (5-10) ~
. (A) Cn+1 N ‘

. ‘ | 1

where (A) was a gquare matrix of dimension (L,L) and the right hand

side {F} was a column 'vector the elements of which were caléulated

according to initial assumed values for g It sHould be _

n+l’ lpn+1'
noted that the square matrix (a) does not depend on the field vari- -
ables ¢ and ¢ but d,epe?ld“s completely on the ‘éons_t.;;ugtion of the

finite element mesh,, the ‘¢hosen element shape functien, the factor - -

® dnd the time increment At. . ' .
\. ) - -~ - . ) ‘
‘ The variftional functional of the stream function equa- .

¢’ .

tion can be obtained by substituting from equation (5-2) into.

equation (4-22) as follows: e -

v
\

.~

N

: '-k‘ ' J h ' - Lt ..
TR T (4) (i),2.; (1) * G (d)iaq _
XpWht) = 2 I Glele, )y, 1702 ([B 1 w152

. i i . . L : ¢ c.so®

N . -

This equation may be w‘i'itteq as,

S | ok | . ,,r/7
‘ o gyl = DX () IR

Y

The extremization of the functional Xof¥ ;) is a necessary condi-

~

n+l
tion to satisfy the stream fg.mction' equatibn (4-714)'. The derivative

. -
o s
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. . ' ‘F i N
of xz(wm_l) with respect to the stream function'ai: a typical point ’
j can be written as: ‘._ ‘
3%, W) ; %55 Vhe! '
P ¥ni13 L= 2 Vneny T F
., . . | i
19x,.(y ) : '
£ 32; oo, =1L (5-13) |
i=1 n+lj

~ where kl is the number of the elements .that contain the pdint j as

one of its nodes.

o
L

Suppose that 'ei' is one of the elements that has the node j as one

v

of its nodes then,

‘

W1 Wae)

I orrl o "
=ff [ [b; b; b,lb. +
Vni1j e 48,2 2373 ‘
’ [ev e, c.]c.] {l'b. }(i) dx dy -
. I- 72 ~3°75 n+l
e el e Mo 1Y axay (510
. . j=7r "2 73 n+l - )
. co % T . i
This. equati;ni may'f)e written simply as, " LT ¢
3, (¥ ) Ly s ) -
21 '"n+l’ (1), (1) opaq(d) (i) - a
Ty " [r] L7900 [T 4c ..} (5-15)
- n+1lj . - ‘ )
_- and substituting in eqﬁation (5-13) one ébtéins, . - o
.
. axz(wnd}l)

: (1) (1) (1) (1)« o
= & [T M v 3 -[s1 V(g 3T =0 4 3= 1,0
. 3 V1 1m1 n+l’ 1’ S T 4
' : (5-16)

3
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Equation (5-16) represents a set of linear algebraic equation, which

?
- N

™ can be written simply as: '
oo | + | '
(E) {wm«l} = {6} - (5-17)

where (E) was a square matrix of dimension (L,L) which was also

inéependent of the figld variables ¢, ¢ and depended only on the
- “ N

finite element mesh and the element shape function.' The right hand

side ~{G'} was calculated for a given vortiocity disgribution by using
. .ot . . ,‘- - .,

equations (5-14), (5-15) and (5-16).

I .

=

5.5 Stead} State Solution

.

The steady state solution, without any freestream distur-

. bance present, was’first obtained and then used as an initial con-

dition in the study of ﬁxe time‘ dependent flow. 7o obtain the steady
)i solution the procedure of computations mentiongd prévipti_sly' in
section (4.5)1 was used. '.I‘Vhe‘ potentiai flow solution was assx‘.uned to -
exist initially everywhere in the solu,t:".;:n domain, which was ﬁie -
‘ same case as if the two boundaries of the 'field‘a‘nd the flat plate

. had jerked into motion fruom rest with a constant spee%. The sub-
. S

sequent solution was for a viscous ‘fluid. The upstream £low .{vas -

assumed to be of uniform \:efocity while the downstream boundary o
. * . . ‘ .
LY : conditions were obtained at a given timé gtep by using ‘the spdace-

f owea® -
.

time delay te'd;mique ,mentiondd previously in sedtion (2.7.4).
S .

P




\Z“ . ) . \
The steady state velocity distribution at different sections in the

A . ) .
flow field can be seen ‘in Figure (4) where the solution was also,

compared with that obtained by using the finite differen;;e me thod

N

presented previously in Chapter (2). As a check for the results

the skin friction coefficient, cbtained by using the p'?sent. method

and the finite-differen-ce method, are plotted in Figure (5). On

the same graph the coefficiént of Skin friction calculated from

Blasius solution (54) and also from Howarth solution (see Appendix
(D)) were plotted. 'The Blasius solution was based on approximating
the freestream constant velocity by the mean value of the velocity

at the gdge’ of the boundary layer growing over the flat plate, The

only difference between Blasius and Howarth's sglitions was that

e

" the latter took into consideration the change in the freestream

]

. velocity at the edge of ‘the boundary layer. . /_"

L T S .4
‘ A - ' : e : ' 4
. In spite.of the.fact that the two flow regimes had-
slightly different velocity distributions at the edge of tig bound-

ary layer the comparison between the author's present solution and

:,‘"fBlasius solution can be made on the basis that the core region of

the flow at the ups:treamside'of the f’at plate had alipst a uniform

ve];oc‘ity'distribution. The deviation in the skin'fri'ctio? ‘coeffi-

cient between the two solutions was due to the following reasons,

\

.
R

1. In the cq&sideréd problem a. ui;iform freestream velodity did not

4 ¢

exist and it can be seen from Figure (4) that the maximum velo~

-
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v
. city in the upper (or lower) side of the plate increased
. . . '
downstream.
¢ ' - - -
&

2. The boundary layer apprbximations on which Blasius.solution
was based were not valid near the leading edge.

r ’ .
' A comparison between the finite element solutipon and

How_arth's solution showed that the coefficient of skin friction
obtained from the two methods were very close over most of the

‘“slength of the plate except near the leading edge.,

»
.

Another comparison between the finite element and

finite-difference solutions in the same plot showed that the
finite element method had the distinction of being more accurate

near the solid boundaries which will imply more accurate estimates -

——

for the drag“force on the flat plate (or any streamlined body).

7/

v

5.6 Calculations of Lift, Drag ‘and',Pitchin;LMoment Coefficients
/ l v . ' A

The shear stress T at the upper and-lower surfaces of the

infinitely thin flat plate can be calculated from .

e
'ru "\’l-l( u)

(5-18)

»
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s

‘ lt.otlal value,

where | was the dynamic viscosity and the subscript u and £ denoted
' m t ) . -
the u'pre}r and lower surfaces respectively.
Since L = g_v - -3-5 and therefore '
x, dy
_ du _ ., du -
Gy = ( By)y=fQ ' Cg = W)Y=-0 . _ (5-19)
the value of the shear stress was expressed in terms of the vorti- -
city at the plate surface as,
; Tu = -H C"u
. » } (5‘20)
'.TRI =4 Cg‘ .
and the local skin friction coefficient was written as, .
L .M Ty '
Ctu T TpoZ ¢ Ce2 T pUZ (5-21)
The resu;tiné drag coefficients were calculated from ,
. . c ’ : ) i
Co = 7 g g, dx # (apUge) )
c T ' ) i .
. Cpg, =M g Zy dx / (spUgc) - (5-22) ’
¢ c , 2 . )
Cop = M [ (5g-L )ax / (pulc) . | -

0
where <, was the 'drag' coefficient and the subsoript T denoted the

N

-» : C, . -, -




‘Since the lift was due to the pressure difge;enée be tween
" the top and bottom surfaces of the plate, it was necessary to deter-

mine' this pressure difference as a function of position.

: ’
The x component of the Navier-Stokes.equation can be
] ‘ ‘

written as, -

P_‘ -4 ’ 2 2
Jdu Ju du _ _139p © . 9%u | d¥%u, _
Ry + u o + v 3y - o + v (3;? + 3;3# (5-23)

At the plate surface the u and v velocity com?onents and the x

space and time derivatives of u, v were zero so that equation

(5=-23) reduced to . I . ‘ ' _
: , . . |
op 3“u - .9 Ju Coay S
G K557 y=0 u[-——a 5 Gy 3y=0 (5-24)

Ix y=Q B
Using the'definition of the vorticity at the plate surface given
/

in equation‘(5-19), it was possible to express the preRsure gradient

in ‘terms of the vorticity'éradieht as,

éy assuming that the pressure at the upper and lower surfaces of .
the plate was unique at - -the leading edge, the difference in pressure
) ) g

between the lower and upper surfaces at a‘point on the plate (x,0)

.

was obtaiﬂed from
v LY

‘x oy ' X 5
4p = -“4[{) (59) g0 - {) (55 yax]

.
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Knowing the pressure difference fAp between the two surfaces as a

fuﬁctioﬁ of distance x, the lift coefficient CL and pitchipg moment

. ’ 5 -

.

'coéfficient about the leading edge Cm was then obtained from the

following relationships; ) s ‘ .
k] . e ., b
‘e
c = .. bp dx / (spUic) (5-25) q
0 .
c X .
c_ = g Ap x dx / (4puZc’) : (5-26)

<o

where c was the length of the plate.

. . Q

The integrations in equations (5-24), (5-25) and (5-26)

o

were carried out by using Simpson's one third rule which gives an

exact solution when-the polynomial that can pe fitted to the data *

points is up to a third order. °

i

5.7 Effect of the Rotational Disturbance on the Laminar Layer Over

2
considered

: N .
lafe the frgestream-\?disturbance. The center of the modiff&d Rankine

the Plate

The response of the laminar'boungary }ayer over the plate
to a two-dimensional rotational digtgrbance was investiggted. The
gteady state solution cbtained ig sect&oﬁ (5.5) was assumed to’
e*ist initially éverywhere in the flow field. The mathematical

model presented in section (2.8), where the flow disturbance was

to be in the form of a 'real’' vortex was used to simu-

F .
- -

° -
8

N\




v

2 o

vortex was assumed to be initially located far upstream. of tﬁe

L : s - °
o plate such that its igfluence on the flow pattern at the entrapce
Q

<

N S 5
of the fléw field was, rfegligible. The velocity distribution in a

° Q Q ' ~ ° . ‘ .
o ‘ section passing Qﬁrough the vortex center can be seen in Figqure (7).
) . . (=]
Q

The- solution procedure for solving a time-dependent problem mentioned °
previously in section (4.6) was used. The upstream boundary condi-

tions were'developed by using equatibns (2~-20) and (2-21). The
. » N .
time~dependent downstream conditions were obtained by using the °

o space-time delay technique presented in section (2.7.4). ‘Ehe solu~

© -

" -

. tion was continued until the® vortex entered the field,. impinged om

o

the plafe and then the disturbance generaqu moved downstream al-~

-

. J , ' L L. )
-lowing the flow region to return again to its original steady state. .

Q , 3
Details of the.solution proeedure can be seenzip Appendix (C).
- ]
o . *

i o
¥ o .

> The velocity profiles at different sections in the flew

.2 4

A b ?
field were plotted at different time iQtegyals and can be seen in
! . o A o ) . )
% ‘ . Figures ‘?ra to p). Figures_(lo-a and b) were also plotted to show
the variatioh of the velocity prqjil%ﬁ with time at two particular
. . - '\" ,‘

-
sections. The variation of the local skin friction coefficient on

the upper and lower sifles of the flat plate at different times can
. . o

- : I ’ 4
alsg be seen in Figyres (ll-a to v). From these curves it can:be

’

seen that the computer brogram solution predicéed that g@paration

: . .
of flow occured at different parts in the flow region at different

times. This will be discussed in more detail in section (5.9).




The drag coefficient (C }y lift coefficient (C_)oand the' »
0 ot N :

C e
~
<
>
o

pitmhi;xg momefit coefficient about the leading edge (Cm) were calcu-
0 : o © ° <1

EX-4
a
o

&

; . 0 ‘1atzd from the known vortic;;;t; field a;: a.n% particular ti;ne.leve],'

- . o : <37 L e . -

by using equate.ions (5-22), (5-25) and (5-—26{)). respectively. The

. . % N . : .

’ : rvﬁriation of C. and Ca:n with time “_are shown in Figures (12). and (13)

o ’respect.j,vely wh;'Lle the(:(:toil:\g variation‘ ofa(D:D'l‘,.CDu and CDT are “Shm]'(‘n .

in Figuré i14) . .
. ' : oy ) . o

3

1 o -
. 5.8, Discussion 3T°the Rethod of Solutiono

e o
3 ' - : v oo :

. B o .
Ogne“pf tht main advantades for using the finite element

method for solving flow prdblems is that the shear stress on the’

° 4 B Q

] body can be calculated with a relativély hELgh degree of accuracy.
o o o :

%o . . K . . L e
e o The more fine’ the mesh near the body the more ag‘:c;ura.;tte the shear
. .y :
B ' 0 i , . .
G stress distribution and subsequently the mor% accurgtg the calcu-
° . ¢ ¢ . )
<o .
) 2ated drgg force. Other advantages.of the. finite element metgod
Q . -

) [ s

opresented in this wdrk was that the two matxglcesu (A) and (E} in

;0 ¢ equatl"oy,as (5-10)" and (5-17) had,the following favourable character- i
g . : 1stJ.cs: ° - °_ ' - Lo )
- : ‘ K ' o v L 9
o ! ’ 1. . The matrieces did not depend on thesvalues of the stream function
s ) [
° 3 o . -

‘- Y or the vorticity T but depended°only on the time increment

§ .
At, the chosen element, shape function, the factor 6 and the .

. 4 N > :
construction of the finite element mesh.

K ° <

Q@
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2. t¢The twe matrices were diagonally dominant which made it easy

-
to solve the matrix er\oblem by an iterative or direct method.

-

3. By assigning optimum numbers to the-nodal points, the resulting

matrices (A) and (E) were banded and this Helped in reducing

the required computer storage and computation timg. This was

. v

achieved by minimizing the difference between the number of

nodal points in each finite element. ' ' ) .

The Crouts' reduction method for solving a set 'of linear

%
-

nique, was used to obtain the augmented matrices of (A) and: (E).

This operation was applied once to each ‘6f the (A) and (E) matrices
T \e '

- and the resﬁlting augmented matrices (A') andk}E') were then %to;ed

-.on the computer disc. The required computations- for éb}ving equa-

C4
\ . ' * '
tions (5-10) and (5-17) were then limited to the “calculgtion of -

-

- the right hand sides- {F} and {G} .and then using the stored augmented

.

matrices (A') and (E') to obtain the solution.

.
. v 4

Three iterations were required to obtain a solution

accurate to at least three decimal places for both ¥ and [ in the

’

o

algebraic equations, which is based on the Gauss elimination tech- »

cage where no flow separation occured. When-separation took place ,

i ' - .-
the nunber of iterations was observed to be increased from three to
. ‘ T -

as much as eight to obtain the same accuracy. The stability of thes

’

-

splution depended on the time'incrgment At as well as the factor ©.
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‘The method presented in this Chapter was tested by apply-
ing it to study the prdblem of flow develdbment in the entrance
regicn of a two-dimensional channel. A comparison betwegn the velo-

city profiles obtained from the present method and those obtained‘ .

s »

by Schlichting (54) can be seen in Figure (15).

-

- -
‘ .

5.9 Discussion of Results

re

BT L e AT P

£
v

According to the comparison carried out in section (5.5)
it has been shown that in the steady state solufion the distribu-
' ‘ tion of the local skin friction coefficient obtained from, the

"y
finite element method was close to Howarth's solution for most of

TR

2

the length of the plate. For example at the center of the plate

v

the error. was 5%. The deviation betweén the two solutions near the

s " leading edge was due to the fact that the boundary layer approxi-

. ' mations were not valid within this region.
. . .

(T

-
-~

v In the time dependent solution, when the freestream was
disturbed, the separation of flow occured at ‘different parts in

the flow field: In order to'simplif}r) the discussion, the flow
field was divided into six regions as shown in Figure (7). Separa~ 6
. R Q

tion of flow first started to occur upstream'of the plate and on o

the lower side of ‘region (2). The reason for this was"t:‘hat,y when

the vortex apptroached the flow field it tended t'é’adecreas\e the velo-

’
n

L




city of flow at the entrance of region (2) and to increase it at

. s
the entrance of region (1). Due to this decrease in velocity the

R

condition at region (2). became as follows:

?

1. A deceleration of the flow existed at t:he° entrance.
]

<

2. The core region downstream of the entrance could not respond

< . \—‘\e .
. ' ' . - i @
. quickly to this change in velocity because of ‘the inertia \ ¢
- : o
. ° .
' effect. . ‘
.. @ ' % " ) e - . v
. ) ” . Doy
L 9 L °
‘Therefore a decrease in the flow velocity in the viscous regipn | ® .
% ' 4 . e < s o
al o .
. N . a
near the lower wall could be expected. The decrease caused .the .
B ‘.-F ) ) . - Q" . . a ' .
; separation of flow. o . o D .
P B Q t Fo) o . . s
> > § © ] .
4
2 . : .
£, . . ‘ P .
5 » ® As the vortex approached c¢the flat plate its effect 6n 2.
e . @ 0
E o ° ‘ - s° o ot
- ? o : ) the velocity distributions at the entrance Jf regisfis (3) and (4) ", L
- .\ ° 4 . . < N , o
ﬁ; . C" . 14 5 I * R -
» i increased. The increase of the velgcity at the entrarice of region
£ ' ° . o . : ' - .
; T - o & © s 2 © oc SO
¥ e (3» tended 4o increase tife shéar“sﬁress and subsequently the sk1n° . : s
w‘ ' . 5 C/" ) - 9 : w ° 0 ‘ Y o
. o, . frlctlon coef51c1ent on the upper 51de of the plata.o On the other ° e
; s ] s '0 -t °e 'QQ ° s g
.°. hand the decrease q,f Veloc1ty at, the= e,ntrar;ce of regloro (1) tended -
W' tow . 0 < o “ o \,.Da OD
‘ to decreate the shear stress Qn the lower stde qf the plate a8 ; o. . L
¢ ° L2 s e q o % 20 %a,
. . 5%
, - .Shown in Flgures (11—% tq=v).D°aninh éhe retardatlon of flow at - % s e, L
é, » D ot e % v ¢ © . ° . B oo
2 © ©
. o " the entrance of region (4) caused the flow to separaﬁé due,to the ° L f |
D . a0 9" o , B B} U , ‘- O' L) 5 % S . HCL, ° ° P v ) ao y‘ .
. r o reasons nentloned prev1ously, however im this case-the geparatioﬁ s . LT
0 . 9 - ° o ™ T e vt
° L, ' oocsured on the 1mfer plate §9ur5Pacé and themJQWer b@und@ry wal”l. e ’
' ” . : , L0 o 0 o E ST '%5' o
- - y 4 K - ’ “ e - »
01 st s o 0.2, o o7, ° 2% g o
o G ) < @ ‘ “ -0 Qb‘ o ,s- " ° ‘.) °© [ o )
N y © )J~ P g “ oo s P
. ° ., N ’ , 6 §> R e 2 el ©
o L v ' . ] v
. & ! °, ° ao Q . O' .~ ) ° ao . "Vu o 9:’ ° v e .
v a e <y 1. B} ° A R D, © © A
‘ a9, 2 ) ‘ o a o e # ¢ ° K QO & ‘
O EEN . <, v . “ o
¢ C" " ° o '15 " ¢ 0 4 ° P IR o P v’ 3 og U . * . ., ‘




A 4E T B R Te ) B, SR TMADEIN

<@
pe
[

7, b0 W PR AR

o

°

ad

R o

(e

4]

v

When the vortex moved further downstream and 1ts effect,

decreased at the entrance of regions (3) and (8), the flow started .

- S

to recover speed again at the entranceé of '(4) while slowing down at
' - -~ ° . '
the entrance of (3). This effect tended to-decrease t5he~shea'r

stress on the upper-side of the plate while incrdasing it on the

lower side. Sepafation occured next at the upper, side of region'

‘ . a
(5) .for two reasons. First because the flow was .retarded at- the

° . M

éntrance of.région (3)." Second because the accelerated flow cofing

° ° . /] c - , ) . .
from the lower side of the plate tended fo inctease°the - 'velocity of €

© ° & . - N o ‘. M
flew at the lower part of region (5). ° At the same time it was o

0 ' E

observ;:do that the shear stress on éire'loder side, of the plate was

) ° " .

larger than that on the upper side-. . The reason for this .was that
. . . . . .

M >
o o N .

during the -time at which, the flow was accelerating on the lgwef1

o P o - .

side it was being retarded 0;1 the " upper ones This can be clarified

¢ o . .
oo % i 3 © « ¢

) g , .
by censidéring th.e bqundarye layercequavtions for the case of accel-~
o . © ' . . . . i )
erating (or Petarding) free stream as follgws. From the Navier- .
) S “

N

e

° . 8 ] VL
Stokes equations, with Prandtls' c_appruoximafgums, . .
. “ ¢ . e . ¢ e v Tt o
Y5 Ju s da_ . 13p . . 32 | ° o
u u . 9p u o °
—t U+t N = - = + v : »  (5-27
< g e RS R R 527
. S T ° [+] ¢ a ' Sy .
) i o ° R 2 .
v“vitll the bogﬁd‘ary eonditions, : o © o -
e, ° , o - o
© © < . . : ", N - "b
at y=0 u=v=0 anddty=8 .u=U0 ,»v=0 o .
o 4 o . % g o ° D o .
~ o 9 o . v
° o 2 - ° Y [ ° q [

, . o % . . “ o ° - R g a N
where >,. 8§ ds.the boundany layer thickness,, ,° ° - °
Lo o

o> %

o o

R ° <o » o o o .
. e v ©® ¢ ’ © 0 . . “ o

¢ . M a o a2 - ! -
and . .. ‘U is the freestrqam velocity , ' o o o ©
» . - g‘ °~. © vy . ‘ ‘g
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6 i then: ‘ W,y CLIN S (5-28)
o e T P+ px ° v
. - . i
Equation (5-28) indicates that .the term %% depends on both %% and
- . U %g. If %%-isAnegativel(é.e.vﬁﬁe flow is retarding) such that
' 90 AU, . . ' . )

- (52 + U 5;) is negative definite then by equation (5-28) the pres-

= . . e c
sure wikl increase downstream. This increase_of pressure tends to
decrease the shear stress at the wall and also may tend to cause

v ©

¢

flow separation in some cases.

.
¥ [

» a
o f &

o o

o .

the vortex was approaching the plate.’ For this flow
@ “© .

Falal

. . o D .
The lift coefficient (in the case when.the vortex had

negative strengih-“clockwise' rotation) was of positive sign when

» . L .
incidence. one

B
&

o * ° ? « .
v would intujtively expect negative lift on the ﬁlate. The reason for
% ° this reverse was thag the negative vortex created higher velodities
° . ‘o c'® . v e -
; < 0

[
~

caused suction on the upper side and increased-the pressure

lower one and both effects tended to credte a positive lift.

%

gt R Y S
.

terms %% and U %%'

°

had a decreasing neg%;ive definite vadlue.

a

oP
x

. the vortex.was approaching the plate, the term

¢ -

U
3t

[+)

ao.
vqﬁegatiggiyalué which tended to increase “thg value of =

© =}

L4 a
v b
ol

on the

o
This

-}

g

had increasing positive definite values on the | -

o
=—°'had a decreasing

o
The variation of the pressure gradient 5—-with time, obtained from

on the ‘upper side of the plate than on the lower side. This effect

. A o .
: : + can be understood by considering the boundary layer equation °(5-28)

in the follgwing ways When the vortex was approaching the plate the.

.

<

On the. lower side, when

L]

on that side.
-4

<

o

3..-

upper side which implied by equation °(5-28) that the préssure gradient -
-] a k4 . -




e -

‘the finite element solution, at a point at the middle of the plate

(x* = x/c = %) was plotted in Figure (16). Sinte the pressure

Vg TAMTER, I M e

he=d

~.

gradient was decreasing on the upper side and incdreasing on the
A 'Y .

\

> lower one (when the vortex was approaching the plate) a higher pres-
¢ N . 9
sure on the lower side would be expected and resulting in an increase

[

~

o, e

of the lift coefficight as shown in Figure (12). 0
\ ' .

o ) ° o <

AR ke .

v When the vortex impinged on the plate and started to move

5 downstream (approximately at t = 1.6 secs) the velocity on the upper .
.. o

. o
- . o

- . : ’
: side of the plate was decelerating while accelerating on the lower

°

side. Accordingly a negative value for — 3 was created on the upper

t

side and a positive value on the lower one. By equation (5-28) it

< e

can be seen that the pressure gradient would decrease on the lower
3 v ’ ° T N o
Iy o » Side and increase on the upper side. The same response was obtained

_{from the computer program as shown in Figure (16). At the same time

? .the pressure started to decrease on the lower °side and to increase
. ' on the upper‘side and this tended to decrease the lift coefficient

o : .
CL and to have a negative lift when the vortex was being shed down-

stream as obtained from the solution and shown in Figure (12)s
& . « °

@

" ‘ Figures (12) and (14) shows, that the variation of the

total drag coeff1c1ent with time was much less than that of the lift

°

’ coeff1c1ent. The reason was that any tncrease of the veioc1ty pn

< o

one 51ab of the plate was accompanied by a decrease of the velocity

M) e ®

e .
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on the other side. This effect' tended to increase the drag on one

#
-

v

side and decrease it on the other side such that the mean value did -
not change considérably. gn the other hand a pressuré'decrease on-
-

-
<

other side and bgth effects tended to create a normal force towards

°

one side of the plate was accompanied by a pressuie increase on the

the low pressure side.
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‘ THE RESPONSE.OF'THE.VISCOUSALAYER OVER

' A FLAT PLATE TO PSEUDO-TURBULENCE =

e

g

6.1 | Intro&uétr‘on ' .

Lo

s Recently more interest has been given to the studies of :
s . : N
simulating unsteady flows, such as turbulence, using the.digital

N e

computer; the so called computer simulation expefiments. The

. P
success that has been achieved in these studies enhanced the pos-

PArass

sibility of investigating the effeect of pseudo free stream turbu-
lence on the viscous boundary layer over a body surface by ‘using
a mathematical model to simulate .the approaching turbulent flow.
One of these studjes is the work by Lilly (1) who
developed a numerical simulation technigue for two-dimensional

- . ; 4
turbulence. In his approach Lilly considered an ipconpressible

~

turbulent velocity field to beiidealized as a random vector field

Ro gy, T

governed in time and two-dimensional space by the Navier-Stokes

: B
- , T

equatidﬂ.; ) .

R s
ot

¢ . Base (2) developed a methbdd that can be used for simu-
. ¥ ” -

lating pseudo-turbulence of different statistical chafécteristiCS'

) L J

@ »

, ) -
: L

99 .




and to-obtain a continuous velocity time history at each point in
the flow field. The apprBach was to assume that the free stréam

turbulence consisted of a discrete random distribution of moving

"'xeal' vortices and by using a suitable vortex funetion, the flow
was rotational and the continuity equation was implicitly satisfied.

It was found that by changing the rotational core size of the in-

~"dividual 'real' vortices and also by changing thefmeaq distance
N

between them the statistical characteristics of the pseudb;tmrbu—
lence' was changed. Anothei contributien in the-ﬁumericaL‘solution
of two-dimensional turbulence is found in the work by Ahmadé‘and
Goldschmidt (3). ; . '

a .
In this chapter a computer simulated model of pseudo-

-

tp’rl.aulence, 'bas.ed on the work By Base (2, 93) was ﬁsed to genéréte
th; outer boundary ;6nditions‘for the flow over a flat plate at a
.Reynolds number, of 600 (based on the time mean'valéé of the ap- . N
proachiﬁg~flow velocity and the chord oflthé plafe). ‘The qontinuity
and momentum conservation equ#tions were solved nea? the pla£e by

using the variational-finite element method of solution presented

in Chapter (4). Results were obtained fpr the time variation of

lift and drag forces on the pléte and these results were expressed

°

in coefficient form. The variation of the velocity components and

vorticity at different points in the flow field with t%he were also

.

plotted.
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v - 6.2 Descriptioh of Considered Problem o ' o :
The probl'em considered was that of a thin flat plate, set
1 at zero incidence to an initially uniform flow. A finite element
mesh was set around the plate as shown in Figure (17-b). Upstream
and out ofy influence of the plate, finite groups of randomly posi-

t(ioned moving vortices to represent the oncoming eddy structure .

were set up on tr’xe computer and allowed to move with the free

-

. str‘eam towards the flat plate. To illustrate the method of solu-
. tion, Figure (17-a) shows five boxes for the real vortices, with
the center box subdivided into an additional three boxes near the

centreline, with the plate (BQ) mounted as shown.

.
.

S
With an.,increase of time, the vortices asserrb]..eci ranﬁamly

’ : e

in box number 1 were cor(vected towards the plate until the first

_four boxes were filled with vortices. With further increase of
time ‘and w1th no further increasé in the number of vortices being
aéded to t%"'xe model, the program was so scaled that.: within a given _
time.pe'riod the vortices nove'd-“’o'ne box length downstream, At this
particular ti@ine‘ period approximately one quarter of -t;he total
number of vortices fur;juest d&wngtream,'4'that by now had little
influence at thetouter boundary points of the finite elemént mesh
. | sténcil (ABCD) , were removed and replacéd by the same number Aof

X 2

similar vortices with new random positions and new signs upstream ' .

>
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of the plate where again the vortices'had little influence on the

, conditions at the boundaries of the finite element mesh stencil \<

{ABCD) . -

The vortex model then continued and the process repeated
again so that a continuously running program was achieved. By this

@

means, therefore, the vortex model provided a continuous velocity
-

field at the outer grid points along the boundaries AB, BC and CD

of’the finite element mesh.

The effect of the pseudo-turbulence therefore entered
tﬁe'flow field in the form of time-dependent boundary conditions.
Thé unsteady flow and vorticity we;e convected ;nd diffused within
the mesh stencil an?lfinélly modified the flow field over the flat

o

plate.

6.3 The Unsteady Boundary Conditibns

In this section pseudo-turbulence flow modglé are dis-
-

cussed which provided boundary conditions upstream of the platé
A -
and at adjacent sides of the finite element mesh, as shown in

Figure (17-a). i .

The approach to model the turbulent flow in this chapter ®

follows tRe method described in references (2, 93). In the model
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to determine the boundary conditions, 'real' vortices representing

B

the pseudo;turbulent eddy were convected along in a uniform stream,

similaely as in Taylor's "frozeén pattern"’model of turbulence. This

RN

was similar to what has been observed in 'grid turbulence' where the ~
disturbance (or eddy) can be convécted downstream unchanged for a

considerable distance and decays very slowly. Only the continuity

‘

equation was satisfied with this model which ensdred that it was
s

kinematically possible. At a fixed point in space the stream func-
tion valug, the velocity components and vorticity varied with time

but the eddy pattern did not change as it was convected downstream.

v o

The coptinuity equation was satisfied by suitable choice

of vortex function. The method pfovided a continuous pseudé—tgrbu—
: 0 ] ‘
lent velocity time history at each point on the finite element mesh

<]
.

boundaries as shown in Fiqure (19). In the model of pseudo-turbu-

o

lence developed by Base (2) it was constrained to satisfy the con-
<3 .

-

tinuity equatin as follows.

The tacit assumption was that the velocity at any field

Q
point (x) was given by the sum of the contributions from the real

,vortex expressions. The velocity (ui) therefore at a boundary

poxnt.(gi) was given by

N
u, = . -
i z (ui)m (6~1)
m=1

A @
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where X, was the position vectot of the houndary point (i),

3

' . [ . .
qi' i = 1,2 were the velocity components in the x and y

direction,
- . o -
and (uijm was the éontribution to ‘the velocity at the point (ii)

\ . A
" due to the mEE vortex and N was the total number of vortic?s repre-

senting the model. It could also be shown, from equatioq‘(6—l)
that the spacial derivative at the ;éinf (Ei) was also equal to ghe‘

sum of the derivatﬁvg contributions from the complete array of’ s

vortices so that,

VVAaui N aui .
Pyt z (3;7)& » 1= 1,2, (6=2)
Q l'ﬂ=].

>
© B

Since a condition for the vortex generating function was
. .

that the continuity equation be satisfied so that,

aui ;
(S;Z)m =0 . o (6-3)

g

then gy‘sdbstituting equation (6—3) into (6-2) then:

2
o

The continuity equation was therefore satisfied implicitly
throughout the whole vortex’ model. The velocity field for an indivi-

" dual two-dimensional vostex was obtained by using a stream function

expresaion with the following form; : , 3 .

-
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a s ' = - 10O rc + (x=f -u t + - 2 . -5
. . v =5 log [rZ + (x-g ~u ©)2 + (y-n)?] (6-5)

»
Q

i .
N . P o ( 9}
< . .
. . . .

where (x,y) was a field point;'(goz n,) the initial random position

e Y. : - . - . *
of a vortex in space, Fl the circulation constant,'rC the vortex
o . :
. [ « . c ,“ . -
> : s . e v ) - . -
core radius, u, the convection velocity which in this case was con-
o

. stant and 't' the time. Theg ~orticity field for the same vortex

v,
'

can Ye obtained fr@y the relatiop [ = E-VZ\JJ”and can be writtgﬂ final-~

R} a
o

. ly as: . °
e o Fl 2!‘2 s . B i
N te- T 2 ° - 2L“‘/ 2{‘2 | (6-6)
S elre + (x-€ -u t)})< 4+ (y- ,
o [ ot (x-f -u b (y-n)?] ’

2 o

where ¢ is-the vorticity, at the pq;nt (x,y) .

6.4 "Method of Solution : o E

&

- v

. 3 ¢ o
. The equations governing the motion of the two-dimensional

v%scous fluid floﬂfwege expressed incthe« form of the stfeam function
[

®
and vorticity ferm-(see section 4.2). The numerical solution of the

'U -

considered problem startéd by calculating the boundary conditions

for the stream function and vorticity from %*he pseudo~turbulence
model at time t = t - With boundary conditions temporarily fixed

at t = tO the steady state-solution was then obtained by using the
[s3

method presented in section (4.5). ThisS steadysState solution was

considered as an ihitial condition for the unsteady flow problem. *’
o | N & ¢

The conditions at the upstream boundary (%C) and side boundaries

“y © 2 i -




Pl

(AB) .and (CD) of the flow field (ABCD, .see Figure 17-a) were then T,
. geneqﬁted at each time‘étep from the pseudo-turbulence model and ¢
. -
assumed +0 be iéﬁependent of the conditions inside the flow field.

! The conditions at the downstream boundary (AD) were obtained by

using the space—timé delay technique présented in section (2.7.4).

!
4 .
3 The rest of the‘solutiop procedure was almost similar to that given
ii in section (4.6). The only difference was thgt in‘£he problem con-
N sidered in this chgpter the conditions at the two sides of the‘flo&
; sfield were cdmpl&tely specified by the vortex model. - ‘ .
L - T A
1 6.5. Results and Discussion » .
L] . :
‘ In this gxample a vortex model, with daEa given in table
- ‘ (1), was used 40 simulate the free stream‘turbulence as outlined in
' section (6-3). Typical yariations with time of the velocity compon-
3 ~‘~‘$ egts (u', v) and vorticity (;)Sare showri in Figure 218) where‘J' was
3 the fluctuating velocity. in thé x direction such tha£ u' = (u - uref)
: ’ - and U, g Was the mean value of u component of vélocity in %he pseudo-:
a turbulence model. Figures (19, 20 and 21) show the complete flow
. _ domain with the time varying velo&ities (', v) -and verticity (%)
é values a£‘some of the bound;rf peints. On the:sam; figﬁres'thg
:.»‘ variation of thelvariab%es (u', v and z), which were ob%aineé from

]

the finite element solution at a point downstream from the plate,

. . 0 )
were also plotted. The variation of the vorticity (g) at.this point

- .

Moeds-W s g gu + R - PELET v
.
N
&
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" method of sél@tionf;q“actugl time variation ‘ef the forces on the
. . o o n 9 ° o'w,

N v

{see Figure 21) was considerably higher than that at any other
boundary point'and this was to be expected in the wake region of

()

the plate. The variation of u' at the same.pdint (see Figure 19)

. 3 / R
shows that it has a negative value over most of the sample time .and

2

this was éxpected because of the momeﬁtum deficit that occured due

2

L

_to the drag force on the plate. ’ O

> ~
> kel
o
2

°
+ Figure (22) shows the variation of the drag coefficients

- ) . of the pleté with time. Althbugh the vériatign of the drag coefr

2 S o

ficient.on each individual side of the plate was considerable, the
4 -

total drag cbefficient was found to have small variation with time.

A comparison betweén the total arag coefficient obtained from the

@

8olution and the one obtained from Blasius solution, based on steadyJ°

o o
)

0] .
lamirigr flow with u = ureff showed that the two coefficients were

° ' ?
close over most of the sample ‘time as can be sepn in Figure (22).

. N . - e D
This should not be considered as a general conclusion for the case
- * < v

a

of a turbulent flo@,approaching a fla% plate because flagws with

% .
= ©
.

oéﬁer Statistical gescfiptions and higher Reynolds numbirs were not

o o ' . 0 ? o . R

studied in the thesis. The variation of the 1lift coéffibient,CL
= 0 . - N a o

2

with time is shown in Figure (23) and illustpate how with this

o . .®

[ 2

LY . S, A ‘o
plate can be achieved. - . e N .
o - ©
. 8 - -7 .
‘ e > . »

. <

In the considered prohlem the Qﬁter boundary conditions

° d .o

o

()
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- o The first problem considered was that of a flatﬁplaté'

'Q “ which was situated midway between two parallel sides ¢f a straight
o o : <
- Qv 2 ® . a ~ .
< ° X! - Y . < 4
Te echannel wi'th thé leading edge a short distance ‘downstream frqpu the
. v entrance of the chanriel. The steady state sbiut&on,cwhen'tﬁe~ap—
< a o .
o - I8 © c . Q
3]

. [4
proaching stream was steady and uniform, was fiaxst obtained and =

o s

e, this was later used as an initial conditipnuwhén stu@ying the_tiime—°

. N k4

dependent flow problem.i ﬁ%e steady velocity profiles were plotted
° O/ ' - : v
f ‘together with the vamiation of the local skin friciion coefficien

4] “ o

. . ovefﬂéhe plate and compared witﬁ the =availXable resﬁ;;s of a problem

o -
v o o v

“ . ’ .. 2, o . ) P
) . approximagely similar to the considergd ocne. Howarth's selution
; o e < g . > ¢

. . ) . - . 0
o : for accelerated.flow pver a flat:plate was used for comparison and®
. R e} . . [

o

»

o © @ &

o " a ‘good agreemena yés found with the finite element solution. ©

o e e 6 s . [ . . o i Q o 5 . o B ] . &
o ° E) T -° e ° o °
aQ ) o ‘e - , ¢ v’ S -®
. o o ° : ¢ ‘? B ] Do
- ‘The gvariational-finite element method %ptroduced in theg
] v . I’} ® » : . :
° -3 © N

To. e thesis_was-applied to studynthemefféct of.a two-dimensional rota-
. . ) o . B . . s

]
o » @ a0 “a/ - ) -
Jtidnal distufbance in-the approfchldb stt¥eam,on the 1am1ﬁ%; bound-
o 3

o

L)

©, ary 1ayé% over the £1atup1a§e. In this example the rotational
o ) s T M

©
° o G o hd
)

- K

o . .disturbance was s;mufated by-a modifieg Rénkine vortex whicﬁ’yas

3 > °
.

0 o = X o
«sQt initially far from the‘plate such that.its {nfluence on the
8 ° 3 N .
1]
o flow pgtternuat the ent;@néé to the flow’field was almost negligible.

. 'The yortex was then convected along with the free stréam until it

R ¢ o v .

"eﬁ;ered the flow.domain, impinged on the plate .and_ then the distur-
‘c . [+ € < R o [3 . ] - N o

. bance generatedl convected downstream;alfby}ng the flow field to
5 ' - ’ .

© v

o
2 5 ¢ o °

returp“again to its original steday'kxate. Resuits’ have been com-
o o o '

o
. I ¢
‘ n o

o

o

o
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piled for variation of lift, drag and pitchihg moment about the .

o °

leading edge of the piatg. The method of solution was extremely

. stable even when separation occured at several parts in the flow

3

U 3 2 9 ¢ 0.
> field. A complete discussion of the method and full analysis of

c o o

the results were presented in Chabter (5), and showed that the

results were- fairly consistent with the physical situation of th
B 0> , °

" considered problem. : . .

o ° e

.

o

3

A more complicated flow regime was then studied when the .

. v
© . -~

Jeffect of free stream, pseudo-turbulence on the laminar-boundary

° layér growing over a flat plate at a Reynolds number of 600 .(based

o

on the time mean of thMe free stream velocity and the length of the
plate) was investigated. A computer simulation technigue to.gener-
ate pseudo-turbulence, based on the work by Base (2, 93) was used

to generate Epe outer bounéany conditions to a finite &lement mesh °

. set around the plate. Near the plate the variational approach was

o s © i

used to solve the stream function and vorticity transport equations. .
)

The results obtained in. this particular example showed that the
vorticity at a point dbwnsé?eam of the plate was considerably higﬁer

0 thah that at anyoother boundary point due, nét‘only to the convected
by .

vorticity, but also due to that generated on the plate. * The varia-
tion of the fluéfuating component of the axial velocity u' at the

same point showed that it had a negative value over most of the ‘ '
samplectime and this was expected because of the momentum deficit

> that occured due to the'draq force on the plate. It may be noted

L
o

L

o
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©

"that in this case the fluctuating velocity u' waévqith respect to

°

the upstrkeam mean velocity value .and not the local mean value.

2

. I/ ’
-Results were also obtained for the variation of lift and drag co-
efficients over the plate. 1In this example although the variation o

of the drag coefficient with time on each of the upper and, lower

sides of the plate was considerablé, the total drag coefficientgwas

3

found to vary ohly slightly about itsomean value. The time mean of

.
o

the total érag coefficient was found to be closé to the value cal-

, culated from.Blasius solution which was based on a uniform approach
ing stream having a constant velocity equal to the time mean of the

velocity of the turbulent.stream.: This should not be considered as

a gerreral conclusion for such kind of flow becaqse flows with other
a , ! o

statistical descriptions at different values of Reynolds numbers

v .

©
were not studied in the thesis. A complete discussion 9i/the
& o

i

results was presented in Chapter (6).

a

7.2 Recommendations for Future Studies

a ‘ a

a

c ) '
As a recommendation for future work in this research area

the following points may be considered.

-

]

1. 'Studying the effect of the variation of Reynolds number on the

laminar boundary layer response to free stream turbulence.

“a




~

i
<

Changing the turbulence statistical characteristics and finding
its effect on the variation of 1lift and drag forces.
Studying the case of a vortex aﬁbroaching an aerofoil at dif-

ferent angles of attack and investigating its effect on the

lift, drég and pitching moment coefficients (as a simrulation

for an aeroplane wing approaching the trailing vortices of
another aircraft).

Investigating the effect of free stream turbulence on the rate-
of heat transfer from heated bodies by considering the solution
of the energy conservation equation simultanegusly with the

present solution for the momentum conservation equations,

.

o

o

e
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APPENDIX (A)

THE EQUATIONS OF MOTION OF A VISCOUS FLUID-

,The equations of motion in the case of a three-dimensional,

unsteady flow g'f an incompressible viscous fluid (Navier45‘t:okes

eguation) can be written in vector form as‘:
(%—E +U.9) U= - 51- :7‘? + w3y '(5-'1)
and the continuity equation as,
i
A .u=0 ‘ | (A=2)
Taking the vector curl of equation (A-1) and noting that,
SR A/ L u? - Ux(YxU)
the f‘OAIlowing equati?n can be obtained
‘(%zw» U . g = (. DU+ v ©(a-3)

where [ is the vorticity vector defined by

Ixu ' . 1A-4)

—

L

[0

+

In the c.;se.of two-dimensional flow only one comPC*lent
of the vorticity (C3) exists which is perpendicular to the plane

of motion such that

114




° - -115

_ v Ju ’
53 7% % (A-5)

In this case the stream function Y may be introduced such that

(

- 3y - -3 -
b dwy v X%

4]
and equations (A-3) and (A-4) can,be written as,

.2 dfur) . 3(vy) _ 2 (A=6)
? Y + % + 5y v Ver i (A-6)
and -7 =9y (A-7)
2 2
2 o3, 3 -
where ( v %2 + 392 and |4 C3 . .

Equations (A-6) and ¢A-7) are k-own as the vorticity

N transpoft (Hg;mholtzi and stream function equations fespecti&ely.

~
~

‘l

An éxpreésion for the pressure can be obtained by ‘taking
the divergence of the two sides of equation (A-1) and.by using the

continuity equation (A-2). The'fdllowing equation was obtained,

-

L.@W.9u=->vp (a-8)

.

which can be written in two—dimensio§:7, cartesian coordinates as,

2 2.

e R _

5w e - 2 N (Ag‘)
where . g = 238 v _ 3u 3v,

9y 9x  3x 3y

T Ph N




APPENDIX (B)

DEDUCING THE FINITE ELEMENT EQUATIONS FOR A SIMPLE .
PROBLEM AND COMPARISON WITH FINITE-DIFFERENCE

In this Appendix the equations arising from using the
finite element method of solution for a simple regular mesh and

linear-%nterpolation function are shown to be exactly the same as
when the conventional finite-difference approach is used.
. Considerqd, for example, the variation of the variable ¢ N

in the x-y plane to be satisfied by Laplace's equation

-

a2¢ . 324 _
-a—;g + gy—g; =0 ) (B-1) ;

and consider the value of ¢ to be defined along the boundaries 2B,

BC, CD and DA of the simple finite element mesh shown in figure

-

(B-1).

<

The variational principle of equation (B-1) (see reference

-

88) can be written as,

©

: - 32 , 3¢)2 -
;.(¢) éf h{(ax) + (ay) } dx dy (B=2)

where Q is the solution domain.
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The integration over  in equation (B-2) can be obtained

°

. . . ‘ O S Lo
as the summation of integrations over the individual finite elements

and then the functiénal I(¢) can be written as, . .

N : " - :
3 .
e =z s (Y24 (A2 4y g (B-3) :
. ' 9x y
i=1 e, ,
i

where ei denotes the element number (i)
and N is the total number of .elements in the solution 'domain. -

=]
13

The area coordinates El' 52 and £3 of the finite element

~

ABC shown in figure (B-2) are defined as, 0
'E _ Area of triangle BCD
1 =

Area of triangle ABC

- Area of triangle ACD '
2 Area of triangle ABC
q

Area of triangle ABD

° . E3 " Area of triangle ABC
1 1 1
x X2 %
g | y Y, ¥,
‘s therefore 51 =
1 1 1
- x x x o -
. 1 2 3
Y1 Y2 ¥,

;e el L
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g =i +b :‘E".‘+ )
or . T Y TS G
similarly ' E = l—-(a + b, x +-Cc.y) (B-4) . V‘,’
. 2 ~2A 2v 2 2 [=] A 1
B 01 “ ‘ Q . )
= + +
53 o (33 b3x C3Y) ‘
. ) . »
where A is the area of triangle ABC, : e
Q * 9
= Q- Q
and 31 T X¥3 T XY, .
Py T ¥y T Y, ”
<
€17 %37 % .
o <
The other coefficiénts are obtained by cyclically permuting ‘the X <
subscript.s. )
a . »
Using a linear interpolation function to give an approxi— ‘
B [3) ‘ )
mate representation for the variation of the variable ¢ within €ach
. ) e ) o
element ei then :
° ‘ - =3
ei . . o
$ ={e¢ +£¢ +E ¢}, (B-5)
. 11 2 2 331
where 1, 2 and 3 are the loc#&l numbers of the nodes .in the finite
element e, ° . e ) ©
i t
¢1,' ¢2 and ¢3 are the nodal values of % in the element e s
and 61, 62 and,f are the area coordinates of the same element.
3 . .
L] Y v
o © 2]
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Substituting from equation (B-5) in equation (B-3) and
then minimizing the functional I(¢) with respect to the nodal value

of ¢ at each of the interior points in the finite element mesh

(Figure (1)) then,

X c
3I(e) _ ¢ % L
™ iil 21‘ {(K)l 2A G0 2% ==} ax dy
i ..
=0 , M=1,2 (B=6)

o

where K 1is the m;‘irber of the °elemnt; that have the pointeM
as one of its ners,
ﬁ is the local mumber of the nodal point M inside the
finite el;ment e, and Kas the range 1,2 or 3,

and M is one of the nodal poipts inside the solution domain.

o

°
¢

g . . .
For example, suppose on considers the nodal point 3 in Figure (B-1).

° a

119

In this case, M= 3, K = 6 and L = 3 for element number 10 and L = 2

for element number 11 and so on.

.,
4

Using equations (B-4) and (B-5) together with' equation

(B-6) then,

L ACIR ff—z-{(b¢l+b¢2+b¢) b

+ (c ¢ +c o+
30y i=le, L 171 7272
. c3¢3)i cL} dx dy = 0 , *M=1,4 (B~7)
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Considering the mesh size in.Figure (B-1) to be unity and then.
applying equétion {(B-7) to each of the interior nodal points the
following equétions can be obtained,

M=1 - 46 -6 2% -6 ¢ =0
1 2 b 6 16
\ .
M=2 = —¢*4 4 -6 -0 -¢ =0
’ 1 2 7 9
‘ (B-8)
M=3 >  -¢+44 -0 —-¢ -4 =0
- 2 L 10 12
C o M=4 - -4 -6+46 - ¢ -6 =0 :
1 3, 4 13 15 o

The equations (B-8) obtained by the finite element forqp—j
A ) ' . .
. lation are therefore exactly the'same as the difference-equations |,

that arises when using.the same mesh size and central finite- .

. R =) L

.differences at the points'l, 2, 3 and 4 respectively. However, it
. - M G
may be noted that the finite element method is not restricted to

. N 2

. . ' '
regular mesh shapes as is. the finite-difference method.-

o
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Number Jin perentheses denote the number of each flnlte‘
element (n = 1°N). +~
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[\

o

0

N

N

~

- The uhderllned numbers denote the global number of each
of the riodal p01nts )

0
@ o =
. ° “ <2 .
o
N - - Small numbets denote the 1ocal numbergof the nodal point
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AIDS FOR COMPUTAT%E&;ANB COMPUTER S

he

LT ; CReow chafts . P :

. P 3 “
~ R . o,
o < : > s

In this Appendlx some detalls of computatlons together .

2 - ! Tl

o ' w:.th éle computer fdow q}warts “for the problems .,ccméidered 1;3
Chap‘tvers‘ (5)D and. {6} are p,resented. .7 : St o “

" N o

‘o Q

N o N . 2 N
) . K] « s ot . B -2
s ° - : ;
. v g < 3 « ' i ¢ . " =2 <
. oo . e c . - ® :
o ‘ Y - o oq
o ¢ o M .

: b N v, s .2 e )
o : The first grdblegi considered inv’Chapters (5) was to, obtaln ¢

s 2 o

oo . ° £

N ‘c 0
v thé steady state solution for the flow’ over a flaat pla,»te when the”

o

°
o
< - %

o C

oncomng stream was unlform. ’I‘he solutlon waos obtalned by solv:m;ge

°
o
N %o

a0 . the stream ﬁunctlt%n and vortlclt:y equation W1th the procedure glv%n

o EE €

in- Chapte; (4)a/ \The applicatloﬂ of equatlons (5 - and (5 16) at >

2
- 2

ea}.cthiod{alc’;poin‘t inéi‘ée the fini;e eleme(nt mesh resulteqd in one’

< N ' ° . "’
© e o« - ° o M "o b ° B ° "o

equatibnhfo_r“ t‘h”e_ ovoréi!'cslty and anpthe'r equétion for tﬁe')stream

ﬁ ‘-’ @

o ES ° o, o -
functhno In the adefrivaj:lorg of th*ese equatxons the fol}&\nlng ex- .
o - o press,ion (see reference (89)0) was frequently uéqd to oax;ry out the ;
3 ’ v o n ¢ N © o s ° j
inﬁegrationAof"the area coordinates=66erceqph elemegt°w3° o .
e 4 ® z ° ¢ Lo ‘

c

o

F o . '0
° . o o

l’ p""v q‘ r . .' .3 _ r'
! 2 gz,u.g{ dx'dy —o 1 (p r+2).',

e, : . . ,

P < L i

. 4 l v > A o "‘ . ~ s

- o v . . “ - 1 Y
‘ .

E
[N ;\ © 3 o QU
“The equatlons resulstlng at '*each nodal po:.‘nt were assenbled in the
t matnx forms glven in equatlcms (5—10) for the =vort1c1ty and (5-1’7)

P :

.for the stream function. . It was found that the 10catlon of the ceef~

9]
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L

°
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f;c1ents in the twb square coefffcxent matrlcesa(A) and (E) in .

o
o o N ; o, v
] @

. equa}ions“xs—IQ) and (5-17) dgpended pn the ‘method usgd For labéling
¢ e - e . v °

>
) o °

o - ‘the nodal pdints°in the finite)element meéste. In this problem the’

- s ° . o

- nodal points Were labeled 1n such a way that the differentce betweenc
- 0y u u o "OCOD" < ° v [ ° o 9
¢ R . . .
, -the numbe; of any two polntslln one element was mind mum, except fox e

- o 0
. @ v
[ . & > .

< “ the boundary péjnts where ;he7bouhdhry°cbnditions we}e‘assumed to |
. s ke . N \,0 e N . ‘y‘ o
be completely specified. By using this method-the result¥ng square |

. .. B o -
v 2 ¢ N 2 P Ua

N Q¢ . R -
matrices (A) arid (E) were banded (non zeto elements only near-the
‘ . .

[4)

§rinciplé diagohal) ¢ The actual stofage used ln the computer for

e

@

o each of those matrlces was (257 x 23) lnstead of (§S7x257) (i. e.
0, -0 *

about 8. 9(53 of the computer storage requlred for the onglnaJ. matreLx‘)
° ¢ 4 V @ SR ° r

oo sxnce the zero elements awax f¥om _the band were ellmlnated 2$p
x“:;

o 3 Te o ] o

Ul

sdlve* the matrix pgobIem%.given in gquatidons *(5-10) afid (%—lj) a
S, N R o

ispecial,xoutine‘was~yritteﬁ to apply thé& Crouts' redgction me thod

g

o
¢ a o "
G

‘ to the bandsustgfed. This method has the advantage of allowing the

o’ o

-

. resulting augmentéd mat¥ix to occupy  the same space that the original

-
.

[}

matrix wg%iinu(i.e.,no frore storage was %eqﬁired for the solutlon)
- . e .o "\
Furthermore by restricting the calculations to the bands of (A) and

i) .

(E) the tdne of computation for solvigg the set of equations was“

o

v -

2% of the orlglual solutlon tlme when uslng the convent10na1 Crouts'

”

. < method. Since (A) and (E) are lﬂdependent of the flow variables
o [ @ ki
(u, .v, 4, T)-the Crouts' teduction méthod was applied° only once and

the,xpsuiting augmented matrices -(A') and (E') were then stored.

]

o

. © . i . o o
The OVerall“éomthat}og procedure is shown ih Figures (C-1}, .(C-2),°

and (C-3). %fgpre (Cll) shows the conpﬁter‘flow chart:for the pro-




o

as that shown in Figqure (C-3) except that thg boundary conditions

©
0

o©

°
o

gram used for arranging data and deducing (A) and (E) énd for

9

obtaining‘(A') and (E'). The computational procedure to obtain®

0

n figure  (C-2) whereas the

°

o -] *

the steady state ‘Solution is_shown i

o

°

proc¢edure to obtai

B .
n the time dependent solution for the problem

-

° .

"

considered in,Chapter (5) 18 given in Figure (C-3 . The solution

o -

procedure for the problem given in 'Chapter (6) is almost the same

at. the “upstream and at‘thg two sides of the flow domain were, gen-

B 5

° v o < [ ¢
erated at each time step by using the pseudo-turbulence model which

5
A -

was based on the work by Base (2).

[

0




o ° -

Fig. (C-1): Computational procedure for arranging data and
- for the assembly of the constant matrices (A)

‘and (E) of equations (5-10). and (5-17).
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( start ) Y

>

\\\ Read v, 8, AT, K, L //7

Read coordinates (x,y) for
each nodal point

Read nodal points for each
element and read boundary
points

Find out elements for each
nodal point and arrange

]

Repeat forx all elements:::>— ————— -

Select the nodes and their . *
coordinates for each element

«

Calculate the area of
the element ¥

Calculate the coefficients
aj, bj and cj (3 = 1, 2 and 3)

L Continue }+— __________

— o ——— —— — — — — —_ — —— —— — — —— — —— —

3o vt



e

Repeat .for all interior points:::>_ _____

Select the elements for each
: nodal point

.

AppW equation (5-9) at each
nodal point

~

Put coefficients of the above
equation in proper places in
matrix (A)

Apply Crouts reduction to
matrix (A) and find the
augmented matrix (A')

Repeat for all interior points

L

Select the elements for each

" nodal point

~y

1

Apply equatidn (5-16) and store
coefficients in proper places
in matrix (E)

—
I
|
|
!
!
|
]
|
|
|
!
I
. |
I
|
e -
————
I

| :

" -

[ ’

|
|
'
|
|
e — — — —— ~ 4

Apply Crouts reduction to
matrix (E) and find (E')

‘kkStore,all data on disc )7

Stop

Fig. (C-l)'continded
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Fig.

(C=2):

e

Computational procedure to obtain the .

steady state pollution for the problem

stated in Chapter (5) - the steady flow

over a flat plate.



‘ ( start )
\\fecall all data from disq// )
> [ !

Q

consider n.= 0, t =n

At = 0
3
"Read initial values of wn
on the four boundaries
Is a reasonable quess No .
available for f in domainZ— . _ ‘:
'
}
i ‘ b 4
Assgrrble matrix {G} ., __ | Put L =0 at all of the
using equation (5-16) interior points of the
domain

Use (E') and {G} to solve
for wn (eq. 5-17)

‘Let previous ‘values of Y, I
at each doymsftream boundary

point to pe same as when
t=0

|4

Calculate the values of Yn4
= and Cn+1 at downstream boundary
| points using equation (2-17)

Iteration number m = 1
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.

. Assume as a first approximation
(m} _ (m) ’
that wn+l N wn, Cn+1 = Cn for

all interior points.

>

Ugaate Cn+1 on solid boundaries
ful

by using equation (2-16)

Update wé at ;Tl interior.points by
wsing {¥g) = 0{y!™ 1 (1-0) (g}

<j:)f + Update L& at all interior points

‘'by using equation (4-15) .

N

Assemble matrix {F} by using

\

equation (5-9]

Use (A') and {F} to solve

m1l
f z
or “n+l

Assemble matrix {G} by using

: equation (5-16) c
1 )
. e ~
Use (E') and-{é} to solve ' - ° -
m+l ¢
f "
or wn+L
Compare values of.wrzi with
m +1 m
. wn+1hénd n+l with r’rwl'
at all nodal points

’ . ' ) i <f> Fig. (C-2) continued




Is ,convergence

’ achieved?
' Yes ) -
Calculate Ap = -
alculate Ay wn+’l \pn
G éndAc:gn-bl—cn at
. ; all nodal points

Jds coﬁve rgence

No

achievedz,

<

Print out the steady

Y and [, distributions

-
'

P E - calculate the u and'v
velocity :fields by using

v = N = -3
u=%", V-

<

Print out the steady u and

. v velocity distributions

»

Store ¥ and L distributions
/ -.op disc

Put valdes of { and ¢
i 1a f .and
n p ces O lbn an Cnu

respectively

n+l ‘n+l

© a

Put n =.n.+ 1, * .

"t = £ + At

o ' ) a‘
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Fig.

(C=3):

Computational procedure for obtaining the

time dependent solution for the problem

stated in CHRapter (5) - The unsteady flaw

o 3

over a flat plate due to a single rotational
o 3

disturbance.




( start ) .

."

\\Recall a?data fromfaisS/7

Recall the steady § and C.

digtributions from disc
7

Consider n = 0 and

t=n At =20 >

.r—#————‘—_—-i z

Calculate the values of wnkl and

i+l at the downstream bouﬂdary

points by using equation (2-17),

I
'

Calculate the new upstream

A | .
conditions (Vn+1' Cn+l) by using

eéuations (2-20) and (2-21)

Itération number m = 1

i

Assume as a first approximation
(m) o a o (m)
. th%t li)n"l-l - wn and Ty Cn
, for all interior points

v
<

‘Update Cn+l on solid boundaries

‘using eduation (2-16)

o

- vpdate wagat'all interior points
o ? (m) :
by using {¢g} ="6{y }+(1-9){wn}

n+l
(
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.

-4 st SRR AR <> a2 sl -l ) ‘e
-
.

* . . Update ?;5 at all interior e .
" 4 points by using equation (4-15) )
¥ -
L[] 'u N . Q
N . Assemble matrix {F} by ° i
- . s * a;
- 4 using equation (5-9) A a
! N P23 ; ‘ ‘ -
- ]
"’i Use (A') and {F} to solve .
’ Ll L N
‘ for Cn+1 (equation 5-10) .
i - © (%4 Q
i ] '
| ! Assemble matrix {G} by .
_. E using equation (5-16) *
., 4 o
il
" - . .
3 < ’ k
i : |
R, Use (E') and {G} to solve
. m+l S .
) 3 . _ for »vwn+l (equation 5-17)
3 - :
1 ' _ g (m+1) (m)
P .| Calculate Ay = ¢n+l, wn+l
. 4 ) :
- _ L (ml) | (m) L
. and A% = L4y T Baey At .
. all nodal points

hale waman Bk b

+aoblild i e o o
N
'
-
.

Is convergence No

achieved?

&
Yes
E b i ' he ::. . % o
. . . rint out the wn+l and ' ) ’

i . ) N . . -
: S . Cn+1 d?l.Str"lbuthDS , i
: l . . ~ . . o ‘ " - .

!' ) . - Calculate the u'and v *
‘ » Tz b

velocity distributions at AR .

o ' time t = (n+l)At S . -
.t ’ . ' ’ » ’ . * : ) ¢

“ - R .
b‘ 4 ., o . :
. M P . . . « 7
. . .
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f =f' =\g ‘when- n =.0 for all values of r, o

e (D-6) I

- . R . e N : .

; B £1=2 0, £ T\ £= g u =..ie.=0 whenn == -
R \ ) .

-{";' e The following rgsults.wer obtained from the solution of equations

. . \ . .

L ,f‘ - - . K < o . ' - N T ‘ o
o - ' . R = 0 - - _82 - . . ) . N N . ., i . u,‘,

‘ \ £(0) = 1.328242  £"(0), = 1.02054 - £"(0) = =-0.06926 .- -
| g . N 2 : :
B S ':f:(b) = 0.0560 _  £(0) ;5Q:0372 o £(0) =" d,0272 - .
N " . ,: .e ' -. o .' . . ;i\\ ) . . A D' .
(£"(0) ==0.0212 £7(0) = 0.0374 .= £"(0) = ~0.0147
1\\ B
' The veloc1ty%dlstr1butlon in thé\boundary layer cbﬁld be" :
- , , ¢ ; N, o
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L. R N ‘ N ‘: . 'A' ‘ \ . “’? @ ' '
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- . - < ll . ‘- . ‘ . o “'..-u " T ) R O .. . . .
:’;. - ‘o . " ] ) i ) . ‘ - i ¢ - 2 ) B )
e AR . o= Sboif('),(nv)-wx*) f;(n)f(.ax*) °f;(ﬂ),-,..} R 0 o )
& + .+ - and-the local skin friction _coéffi.ciéht‘ C. was calculated from, :

LN

. \ ° , . r . ‘. . o bﬂ . \)b‘ 5 . . ‘e ‘ 4 . . . . 2. ‘ . . . . 'l ' . ‘—." ‘.‘7_' p.‘
e o T T m e (==L 2 £ (0) = (8x*) £ {0) + (Bx*) £ (0)=..} 0 (D8 .. L
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4 ! > N o

’ .substltutlng -the above values of b°0 and b in equatlon .

3 - . -

. (D-8) and using A:he obtamed results of f"(O) , f" (0) ) £ (or
. .the values given below in Table (D-l) were obtamed for the varla--

tion ?f the local skin’ fnctlon coefflc:Lent with dlmens:.onless : -
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